• No se han encontrado resultados

On a q-extension of the Hermite polynomials Hn(x) with the continuous orthogonality property on R

N/A
N/A
Protected

Academic year: 2018

Share "On a q-extension of the Hermite polynomials Hn(x) with the continuous orthogonality property on R"

Copied!
11
0
0

Texto completo

(1)

R.

Alvarez-Nodarse

,M. K.Atakishiyevay, and N.M. Atakishiyevz

Departamento deAnalisisMatematio, Universidadde Sevilla,

Apdo. 1160, E-41080Sevilla,Spain and

InstitutoCarlos Ide Fsia Teoria yComputaional,

Universidadde Granada, E-18071 Granada, Spain

E-mail: ranus.es

yFaultadde Cienias,UAEM, ApartadoPostal396-3,

CP62250, Cuernavaa, Morelos, Mexio

E-mail: mesumaservm.f.uaem.mx

zInstituto deMatematias, UNAM, ApartadoPostal273-3,

C.P.62210Cuernavaa, Morelos, Mexio

E-mail: natigmatuer.unam.mx

Abstrat

Westudyapolynomialsequeneofq-extensionsofthelassialHermitepolynomials

H

n

(x), whih satises ontinuous orthogonality on the whole real line R with respet

to the positiveweight funtion. This sequene anbe expressed either in termsof the

q-LaguerrepolynomialsL ()

n

(x;q),=1=2,orthroughthedisreteq-Hermite

polyno-mials ~

h

n

(x;q)oftypeII.

1 Introdution

Thereis awell-knownfamilyof theontinuousq-Hermite polynomialsofRogers [1, 2℄

H

n

(osjq):= n

X

k=0

n

k

q e

i(n 2k)

=e in

2

0 q

n

;0

|

q;q

n

e 2i

!

; (1.1)

whihareq-extensionsofthelassialHermitepolynomialsH

n

(x)forq2(0;1). Throughout

thispaperwewillemploythestandardnotationsoftheq-speialfuntionstheory,see[3 ℄-[5 ℄.

In partiular,

n

k

q :=

(q;q)

n

(q;q)

k (q;q)

n k =

n

n k

q

(1.2)

stands for the q-binomial oeÆient and (a;q)

0

= 1 and (a;q)

n =

Q

n 1

j=0

(1 aq j

);n =

1;2;3;:::,is theq-shiftedfatorial. Besides,expliitformsofq-polynomialsfrom the

Askey-sheme [4 ℄ areoftenexpressed intermsof theterminatingbasihypergeometri polynomial

r

s

q n

;a

2 ;:::;a

r

b

1 ;b

2 ;:::;b

s

q;z

:= n

X

k=0 (q

n

;q)

k (a

2 ;q)

k (a

r ;q)

k

(b

1 ;q)

k (b

2 ;q)

k (b

s ;q)

k z

k

(q;q)

k h

( 1) k

q

k(k 1)=2 i

s r+1

(1.3)

(2)

ofdegree ninthevariable z. So theontinuousq-Hermite polynomialsin(1) orrespond to

thease whenr =2 ands=0.

Theontinuousq-HermitepolynomialsH

n

(xjq)satisfythethree-term reurrenerelation

2xH

n

(xjq)=H

n+1

(xjq)+(1 q n

)H

n 1

(xjq): (1.4)

Theyare orthogonal on the niteinterval x2[ 1;1℄with respetto theontinuousweight

funtion[2 ℄

w(x)= 1

p

1 x 2

1

Y

k=0 h

1+2(1 2x 2

)q k

+q 2k

i

: (1.5)

Inthelimitas q!1,they oinide withtheordinaryHermitepolynomialsH

n

(x), i.e.,

lim

q!1

1 q

2

n=2

H

n r

1 q

2 x

q

!

=H

n

(x): (1.6)

There is another family, alled the disrete q-Hermite polynomials of type II , whih is

a q-extension of the sequene of the Hermite polynomials H

n

(x) [6 ℄. Their expliitform is

given(see [4, p. 119℄) by

~

h

n

(x;q):=i n

q

n(n 1)=2

2

0 q

n

;ix

|

q; q

n !

=x n

2

1 q

n

;q 1 n

0

q

2

; q

2

x 2

!

: (1.7)

The disrete q-Hermite polynomials of type II, ~

h

n

(x;q), satisfy the three-term reurrene

relation

x ~

h

n

(x;q)= ~

h

n+1

(x;q)+q 1 2n

(1 q n

) ~

h

n 1

(x;q); (1.8)

but,ontrary to thepolynomialsH

n

(xjq) of Rogers (1.1), thesequenef ~

h

n

(x;q)g is

orthog-onalontheinniteintervalx2R withrespettothedisreteweight funtion,supportedon

thepoints x=q k

;>0;k 2Z. In thelimit asq !1, the ~

h

n

(x;q) redue aswellto the

HermitepolynomialsH

n (x):

lim

q!1 (1 q

2

) n=2

~

h

n (x

p

1 q 2

;q)=2 n

H

n

(x): (1.9)

Now we are in a position to formulate the aim of this paper. We wish to nd suh

q-extensions oftheHermite polynomials H

n

(x), whih satisfythefollowingrequirements:

1. They are polynomials in the variable x, whih obey a three-term reurrene relation; 2.

They are orthogonal on the whole real line R with respet to a ontinuous positive weight

funtion;3. In thelimitasq !1they oinide withtheHermitepolynomialsH

n (x).

Suha familyisofgreat interestfrom thepointofview ofpossibleappliationsin

math-ematialphysis. We remind thereaderthat thetwo mostfundamentalproblems in

nonrel-ativisti quantum mehanis, the harmoniosillator and the Coulomb system, are dened

on R 3

[7 ℄. Thus our goal is equivalent to having suh a q-deformed version of the linear

harmoniosillator, whih isstilldenedonthe wholereallineR and enjoystheontinuous

orthogonalitypropertyon R withrespetto a positiveweight funtion. 2

We willnotpursue

thisviewpointhere. Insteadwenowfousonthemathematialpropertiesoftheq-extensions

ofthe Hermitepolynomials H

n

(x)under disussion.

2

Itshouldbenotedthatthereare,infat,severalpubliations(see[8 ℄{[16℄andreferenestherein)devoted

to the study of expliit realizations, whih represent q-extensions of the Hermite funtions (or the wave

funtionsof the linearharmoni osillator) H

n (x)e

x 2

=2

. Butnone of these realizations satises all of the

aforementioned requirements : the ontinuous weight funtions in [8, 10 , 13 ℄ are supported on the nite

intervals;theontinuousweightfuntionsin[9 ,15 ℄are notpositive;theq-extensionsin[9℄, [12 ℄{[15℄arenot

(3)

2 Denition of the sequene fH

n

(x;q)g

It is known that the Hermite polynomials H

n

(x) an be expressed through the Laguerre

polynomialsL ()

n

(x)as

H

2n

(x)=( 1) n

2 2n

n!L ( 1=2)

n (x

2

);

H

2n+1

(x)=( 1) n

2 2n+1

n!xL (1=2)

n (x

2

) ;

(2.1)

where

L ()

n

(z) :=

(+1)

n

n! 1

F

1

n

+1

z

=

(+1)

n

n! n

X

k=0 ( n)

k

(+1)

k z

k

k!

; (2.2)

and (a)

n

= (a+n)= (a); n=0;1;2;:::,istheshifted fatorial.

It is also known that a q-extension of the Laguerre polynomials 3

L ()

n

(x;q), dened

[17 ℄-[19℄as

L ()

n

(x;q)= (q

+1

;q)

n

(q;q)

n 1

1 q

n

q +1

q; q

n++1

x !

= 1

(q;q)

n 2

1 q

n

; x

0

q;q

n++1 !

;

(2.3)

satisestwokindsoforthogonalityrelations,anabsolutelyontinuousoneandadisreteone.

The formerorthogonalityrelation 4

is given by

1

Z

0 x

E

q (x)

L ()

m

(x;q)L ()

n

(x;q)dx=d 1

n ()Æ

mn

; > 1; (2.4)

whereE

q

(x) istheJakson q-exponentialfuntion,

E

q (z):=

1

X

n=0 q

n(n 1)=2

(q;q)

n z

n

=( z;q)

1

; (2.5)

and thenormalization onstant d

n

()is equalto

d

n

()=q n

(q;q)

n

(q +1

;q)

n

(q;q)

1

(q

;q)

1

sin(+1)

: (2.6)

It remainsonlyto remindthereader, that inthelimitasq!1 we have

lim

q!1 L

()

n

((1 q)x;q)=L ()

n

(x): (2.7)

3

Therearealsotheontinuousq-LaguerrepolynomialsP ()

n

(xjq)withtheorthogonalityontheniteinterval

x2[ 1;1℄andtheWall(orthelittleq-Laguerre)polynomialsp

n

(x;ajq)withthedisreteorthogonalityon

thepointsx=q k

;k=0;1;2;:::(see[4 ℄,pp. 105and107,respetively).

4

Itisworthnotingthatthefatoftheintegrabilityoftheweightfuntionx

=E

q

(x)in(2.4)diretlyfollows

fromtheintegral

1

Z

0 t

x 1

dt

Eq((1 q)t) =

(x) (1 x)

q(1 x)

(4)

We an now dene, in omplete analogy with the relationship (2.1), a family of

q-extensions oftheHermite polynomials oftheform

H

2n

(x;q):=( 1) n

(q;q)

n L

( 1=2)

n (x

2

;q);

H

2n+1

(x;q):=( 1) n

(q;q)

n xL

(1=2)

n (x

2

;q):

(2.8)

Withtheaidof thelimitrelation

lim

q!1 (q

a

;q)

n

(1 q) n

=(a)

n

(2.9)

itis notdiÆultto verifythat from(2.8) and (2.3) one obtains

lim

q!1 (1 q)

n=2

H

n (

p

1 qx;q)=2 n

H

n

(x); (2.10)

i.e.,thepolynomialsH

n

(x;q) sodenedare indeedq-extensionsof theHermitepolynomials

H

n

(x). The next step is to establish a ontinuous orthogonality relation and a three-term

reurrenerelationfortheq-polynomials H

n (x;q).

3 Orthogonality relation

We beginthissetion withthefollowingtheorem:

Theorem 1 Thesequeneoftheq-polynomialsfH

n

(x;q)g,whiharedenedbytherelations

(2.8), satises the orthogonality relation

1

Z

1 H

m

(x;q)H

n (x;q)

dx

E

q (x

2

) =q

n

2

(q 1=2

;q 1=2

)

n (q

1=2

;q)

1=2 Æ

mn

(3.1)

on the whole real line R with respet to the ontinuous positive weight funtion w(x) =

1=E

q (x

2

).

Proof. Sine the weight funtionin (3.1) is an even funtionof the independent variable x

andH

n

( x;q)=( 1) n

H

n

(x;q)bythedenition(2.8),the q-polynomialsofan even degree

H

2m

(x;q) and of an odd degree H

2n+1

(x;q); m;n = 0;1;2;:::, are evidentlyorthogonal to

eah other. Consequently, it suÆes to prove only those ases in (3.1), when degrees of

polynomialsm and nareeithersimultaneouslyevenorodd. Letusonsiderrst theformer

ase. From (2.8) and (2.4) itfollows that

1

Z

1 H

2m

(x;q)H

2n (x;q)

dx

E

q (x

2

)

=2( 1) m+n

(q;q)

m (q;q)

n 1

Z

0 L

( 1=2)

m (x

2

;q)L ( 1=2)

n (x

2

;q) dx

E

q (x

2

)

=2( 1) m+n

(q;q)

m (q;q)

n 1

Z

0 L

( 1=2)

m (x

2

;q)L ( 1=2)

n (x

2

;q) dx

E

q (x

2

)

=( 1) m+n

(q;q)

m (q;q)

n 1

Z

0 L

( 1=2)

m

(y;q)L ( 1=2)

n

(y;q) y

1=2

dy

E

q (y)

=

(q;q) 2

n

d ( 1=2) Æ

mn =q

n

(q 1=2

;q 1=2

)

2n (q

1=2

;q)

1=2 Æ

mn ;

(5)

where we have used at the last step the equality (q 1=2

;q)

n (q;q)

n = (q

1=2

;q 1=2

)

2n

and the

standardrelation(for a=q 1=2

and =1=2)

(a;q)

1

(aq

;q)

1

=(a;q)

; (3.3)

whih isvalidforan arbitraryomplex.

In thesame waywe nd

1

Z

1 H

2m+1

(x;q)H

2n+1 (x;q)

dx

E

q (x

2

)

=2( 1) m+n

(q;q)

m (q;q)

n 1

Z

0 L

(1=2)

m (x

2

;q)L (1=2)

n (x

2

;q) x

2

dx

E

q (x

2

)

=2( 1) m+n

(q;q)

m (q;q)

n 1

Z

0 L

(1=2)

m

(y;q)L (1=2)

n

(y;q) y

1=2

dy

E

q (y)

= (q;q)

2

n

d

n (1=2)

Æ

mn =q

(n+1=2)

(q 1=2

;q 1=2

)

2n+1 (q

1=2

;q)

1=2 Æ

mn ;

(3.4)

wherewehave used therelation

(1 q 1=2

)(q 3=2

;q)

n

=(1 q n+1=2

)(q 1=2

;q)

n

; (3.5)

whih is a straightforward onsequene of the general denition of the q-shifted fatorial

(a;q)

n

. Putting(3.2) and (3.4) together resultsintheorthogonalityrelation(3.1).

The positivity of Jakson's q-exponential funtion E

q (x

2

) for x 2 R and q 2 (0;1) is

obviousfromits denition(2.5): foritisrepresentedasaninnite sumofpositiveterms(or

an inniteprodut ofpositive fators). Thisompletes theproof.

To onludethissetion,we notetheobvious fatthat inthelimitasq !1 the

orthog-onality relation(3.1) reduesto thewell-knownorthogonalityproperty

1

Z

1 H

m (x)H

n (x)e

x 2

dx= p

2 n

n!Æ

mn

(3.6)

oftheHermitepolynomialsH

n

(x)withrespettothenormaldistributione x

2

. Thisfollows

immediatelyfrom thelimitrelations (2.9) and (2.10),upon usingthefatthat

lim

q!1 E

q

((1 q)z)=e z

: (3.7)

4 Reurrene relation

The easiest wayto identifythe sequene (2.8) ( that is, to nd its appropriate nihe inthe

Askey-sheme of q-polynomialfamilies[4 ℄ ),is to derive a three-term reurrenerelation for

it. Sinean arbitrarypolynomialp

n

(x)satisesa reurrenerelationof theform(see [21 ,p.

19℄)

(a

n x+b

n )p

n

(x)=p

n+1 (x)+

n p

n 1

(x); n0; (4.1)

one an try to evaluate the right-hand side of (4.1) for p

n

(x) = H

n

(x;q) and to nd then

(6)

Before starting this derivation we note that in what follows it proves onvenient to use

thefollowingform

L ()

n

(x;q)= (q +1 ;q) n (q;q) n n X k=0 q k(k+) (q +1 ;q) k n k q ( x) k (4.2)

of theq-Laguerre polynomials L ()

n

(x;q), whih omes from therst linein denition(2.3),

uponusingtherelation

(q n ;q) k (q;q) k

=( 1) k

q

k(k 1)=2 nk n k q : (4.3)

Let usrst onsiderthease when nin (4.1) is even. Then from (2.8) and (2.3) we nd

that

H

2n+1

(x;q)+

2n (q)H

2n 1 (x;q)

=( 1) n (q 3=2 ;q) n x n X k=0 q k(k+1=2) (q 3=2 ;q) k n k q ( x 2 ) k + 2n

(q)( 1) n 1 (q 3=2 ;q) n 1 x n 1 X k=0 q k(k+1=2) (q 3=2 ;q) k n 1 k q ( x 2 ) k : (4.4)

Thenextstepistoemploytherelation(3.5)inordertorewritethequotient(q 3=2 ;q) n =(q 3=2 ;q) k

fromthe rsttermin (4.4) as

(q 3=2 ;q) n (q 3=2 ;q) k = 1 q n+1=2 1 q k+1=2 (q 1=2 ;q) n (q 1=2 ;q) k : (4.5)

Intheseondtermin(4.4)oneanusetheevidentrelation(q 3=2 ;q) n 1 =(q 1=2 ;q) n =(1 q 1=2 )

and the same formula (3.5) for the fator (q 3=2

;q)

k

. Also, we reall the propertyof the

q-binomialoeÆient n 1 k q = 1 q n k 1 q n n k q : (4.6)

Puttingthisall together, we obtain

H

2n+1

(x;q)+

2n (q)H

2n 1 (x;q)

=( 1) n (q 1=2 ;q) n x n X k=0 q k(k+1=2) (q 1=2 ;q) k n k q ( x 2 ) k 1 q k+1=2 1 q n+1=2 2n (q) 1 q n k 1 q n : (4.7)

Theright-hand sideof(4.7) shouldmath with

H

2n

(x;q)=( 1) n (q 1=2 ;q) n n X k=0 q k(k 1=2) (q 1=2 ;q) k n k q ( x 2 ) k ; (4.8)

multipliedbya

2n

(q)x+b

2n

(q). ThismeansthattheoeÆient

2n

(q)an befoundfromthe

equation 1 q n+1=2 2n (q) 1 q n k 1 q n =d n (q)q k (1 q k+1=2

); (4.9)

whered

n

(q) is some k-independent fator. It is notdiÆult to verify that theonlysolution

ofthe equation(4.9) is

2n

(q)=1 q n

and d

n (q)=q

n

. Thus

H (x;q)+(1 q n

)H (x;q)=q n

(7)

Similarly,inthease of anodd nfrom (4.8) we have

H

2n+2

(x;q)+

2n+1 (q)H

2n (x;q)

=( 1) n+1 (q 1=2 ;q) n+1 n+1 X k=0 q k(k 1=2) (q 1=2 ;q) k

n+1

k q ( x 2 ) k + 2n+1 (q)( 1) n (q 1=2 ;q) n n X k=0 q k(k 1=2) (q 1=2 ;q) k n k q ( x 2 ) k : (4.11)

InthisaseitiseveneasiertondtheoeÆient

2n+1

(q). Indeed,onewillobtainfrom(4.11)

anexpression[a

2n+1

(q)x+b

2n+1 (q)℄H

2n+1

(x;q)onlyifthetwoonstanttermsin(4.11)with

k=0anel eahother. This meansthatthe

2n+1

(q) shouldsatisfytheequation

(q 1=2 ;q) n+1 (q 1=2 ;q) n 2n+1

(q)(q 1=2 ;q) n [1 q n+1=2 2n+1

(q)℄=0: (4.12)

Consequently,

2n+1

(q)=1 q n+1=2

and,therefore, by (4.11) we obtain

H

2n+2

(x;q)+(1 q n+1=2

)H

2n (x;q)

=( 1) n+1 (q 1=2 ;q) n+1 n+1 X k=0 q k(k 1=2) (q 1=2 ;q) k (

n+1

k q n k q ) ( x 2 ) k

=( 1) n (q 3=2 ;q) n x 2 n X m=0 q (m+1)(m+1=2) (q 3=2 ;q) m (

n+1

m+1

q

n

m+1 q ) ( x 2 ) m

=( 1) n q n+1=2 (q 3=2 ;q) n x 2 n X m=0 q m(m+1=2 (q 3=2 ;q) m n m q ( x 2 ) m =q n+1=2 xH 2n+1 (x;q);

(4.13)

uponusingthereadilyveriedrelation

n+1

m+1

q

n

m+1 q =q n m n m q (4.14)

for the q-binomial oeÆient

n

k

q

. From (4.10) and (4.13) it thus follows that the

q-polynomialsH

n

(x;q) satisfythethree-term reurrenerelation oftheform

H

n+1

(x;q)+(1 q n=2

)H

n 1

(x;q)=q n=2

xH

n

(x;q): (4.15)

An examinationofthereurrene relation(4.15) reveals that theH

n

(x;q) arerelatedto the

disrete q-Hermite polynomials ~

h (x;q) of type II. Indeed, hange the base q ! q 2

in(4.15)

and substituteintoit

H

n (x;q

2

)=q

n(n 1)=2

~

h

n

(x;q) (4.16)

toobtainthereurrenerelation(1.8)forthedisreteq-Hermitepolynomials ~

h

n

(x;q)oftype

II.

There are two immediate onsequenes of the formula (4.16). Firstly, ombining (4.16)

with(2.8), one obtainstherelationship

~

h

2n

(x;q)=( 1) n q n(2n 1) (q 2 ;q 2 ) n L ( 1=2) n (x 2 ;q 2 ); ~

h (x;q)=( 1) n q n(2n+1) (q 2 ;q 2

(8)

betweenthedisreteq-Hermitepolynomials ~

h

n

(x;q)oftypeIIandtheq-Laguerrepolynomials

(2.3)with=1=2. Seondly,oneanrepresenttheq-polynomialsH

n

(x;q),initiallydened

by(2.8), intheuniedform (f(1.7))

H

n (x;q

2

)=i n

2

0 q

n

;ix

|

q; q

n !

=q

n(n 1)=2

x n

2

1 q

n

;q 1 n

0

q

2

; q 2

=x 2

!

:

(4.18)

As a onsistenyhek, one may try to verifydiretly thatH

n (x;q

2

), denedby(4.18),

doesreallyoinidewiththeexpressions,given by(2.8)foreven andoddvaluesofn,

respe-tively. Thiswilllead to thetwo identities

2

1 q

n

;y

0

q;q

n+1=2 !

=q

n(n 1)=2

y n

2

1 q

n

;q 1=2 n

0

q;q=y

!

;

2

1 q

n

;y

0

q;q

n+3=2 !

=q

n(n+1)=2

y n

2

1 q

n

;q

(n+1=2)

0

q;q=y

!

;

(4.19)

betweenthe terminating basi hypergeometriseries

2

1

. The relations (4.19) are

straight-forwardto verifybyusingtheexpansion

(x;q)

k =

k

X

j=0 q

j(j 1)=2

k

j

q ( x)

j

(4.20)

ofthe q-shifted fatorial(x;q)

k

intermsof powersof thevariable x.

Yetanotheronsequeneoftherelation(4.16)anbeformulatedasthefollowingorollary

oftheorem (1)in setion3.

Corollary 2 Thesequeneof the disreteq-Hermite polynomials ~

h

n

(x;q) of typeII,dened

by (1.7), satises the orthogonality relation

1

Z

1 ~

h

m (x;q)

~

h

n (x;q)

dx

E

q 2(x

2

) =q

n 2

(q;q)

n (q;q

2

)

1=2 Æ

mn

(4.21)

on the whole real line R with respet to the ontinuous positive weight funtion w(x) =

1=E

q 2(x

2

).

Proof. Changethebase q!q 2

in(3.1) and thenusethe relation(4.16) to obtain(4.21).

Aswenotedintheintrodution,thedisreteq-Hermitepolynomials ~

h

n

(x;q)oftypeIIare

knownaspolynomialswiththedisreteorthogonality,supportedonthepointsx=q k

;>

0;k 2 Z. The fat that they satisfy also the ontinuous orthogonality relation (4.21) does

notontradit the general theory of orthogonal polynomials [22 , 23 ℄. The point is that the

Hamburgermoment problemassoiatedwithf ~

h

n

(x;q)gis indeterminate,andthereforethey

are orthogonal with respet to an innite lass of weight funtions, both ontinuous and

disrete ones [19 ℄, [24℄{[26 ℄. C.Berg studied in [27 ℄ some families of disrete solutions to

indeterminate moment problems and showed how they an be used to generate absolutely

ontinuoussolutionsto thesame momentproblems. Inpartiular,C.Bergderivedin[27 ℄the

ontinuousweightfuntionw(x)=1=E

q 2(x

2

)forthedisreteq-Hermitepolynomials ~

h

n (x;q)

of type II and evaluated its moments. It should be emphasized that in our approah the

orthogonalityrelation(4.21)emergesasasimpleonsequeneoftheontinuousorthogonality

relation(2.4) fortheq-Laguerre polynomialsL (1=2)

(9)

Observe that the ontinuous orthogonality relation (4.21) is useful for deriving some

integrals, involving the q-exponential funtion E

q

(z). We do not go into this question in

depth but merely present one of them as an example. One of the generating funtions for

thedisreteq-Hermite polynomialsoftypeIIhastheform (see [4 , p. 119℄)

1

X

n=0 q

n(n 1)=2

(q;q)

n ~

h

n (x;q)t

n

= E

q (xt)

E

q 2(t

2

)

: (4.22)

Multiplybothsidesof(4.21) byaonstantfator(itq m=2

) m

( iq n=2

) n

=(q;q)

m (q;q)

n

andsum

overindiesm andn fromzero toinnitywith theaidof thegeneratingfuntion(4.22) and

thedenitionof anotherJakson's q-exponentialfuntion

e

q (z):=

1

(z;q)

1 =

1

X

n=0 z

n

(q;q)

n

; jzj<1: (4.23)

Thisresultsin thefollowingintegral

1

Z

1 E

q (iq

1=2

xt)E

q ( iq

1=2

x)

E

q 2(x

2

)

dx=(q;q 2

)

1=2 e

q (t)E

q 2( qt

2

)E

q 2( q

2

); jtj<1:

(4.24)

Sine lim

q!1 e

q

((1 q)z) =e z

and theq-exponential funtionE

q

(z) has thesame limit (see

(3.7)), theformula(4.24) isa q-extensionof thewell-knownintegral

1

Z

1 e

2i(x y)t

e t

2

dt= p

e (x y)

2

;

whihreetstheimportantpropertyofthenormaldistributione x

2

ofbeingitsownFourier

transform.

5 Conluding remarks

We have disussedinthepreedingsetionshowoneanonstrut thepartiularpolynomial

sequene ofq-extensionsof theHermitepolynomials,eitherintermsof theq-Laguerre

poly-nomials L ()

n

(x;q), =1=2, orin terms of thedisrete q-Hermite polynomials ~

h

n

(x;q) of

type II. Thesequene so denedsatises theontinuousorthogonalityon R withrespet to

thepositive weight funtionw(x)=1=E

q (x

2

). It wasshownthat thisorthogonalityrelation

leadsto an interestingintegral,involvingJakson's q-exponentialfuntions.

It seems that the same approah an be implemented for deriving a q-extension of the

generalizedHermitepolynomialsH ()

n

(x)[28 ℄{[30℄withtheontinuousorthogonalityproperty

(theaseofdisreteorthogonalityrequiresadierenttehnique,see[31 ℄). Thisstudyisunder

way.

Aknowledgments

Wearegratefulto C.Bergfordisussionsandforhavingdrawnourattentionto the

refer-ene[27℄. TheresearhofRANhasbeenpartiallysupportedbytheMinisteriodeCieniasy

Tenologa ofSpain under thegrant BFM-2000-0206-C04- 02 , theJunta de Andaluaunder

(10)

Referenes

[1℄ L.J.Rogers. Seond memoir on the expansion of ertain innite produts.

Pro.Lond.Math.So., Vol.25, pp.318{343, 1894.

[2℄ R.AskeyandM.E.H.Ismail.A generalizationofultraspherialpolynomials.In: Studies

in Pure Mathematis, ed.P.Erd}os,pp.55{78, Birkhauser,Boston, MA,1983.

[3℄ G.Gasper and M.Rahman. Basi Hypergeometri Series, Cambridge University

Press, Cambridge, 1990.

[4℄ R.Koekoek and R.F.Swarttouw. TheAskey-sheme of hypergeometriorthogonal

poly-nomials andits q-analogue,Report98{17, Delft Universityof Tehnology,Delft, 1998.

[5℄ G.E.Andrews, R.Askey, and R.Roy. Speial funtions, Cambridge University Press,

Cambridge,1999.

[6℄ W.A.Al-Salam and L.Carlitz. Some orthogonal q-polynomials. Math.Nahr., Vol.30,

pp.47{61, 1965.

[7℄ L.D.Landau and E.Lifshitz. Quantum Mehanis, Addison-Wesley, Reading, Mass.,

1968.

[8℄ A.J.Mafarlane. On q-analogues of the quantum harmoni osillator and the quantum

group SU(2)

q

.J.Phys.A: Math.Gen., Vol.22,No.21,pp. 4581{4588, 1989.

[9℄ E.D.Kagramanov, R.M.Mir-Kasimov, andSh.M.Nagiyev.Theovariantlinearosillator

and generalized realizationofthedynamial SU(1;1) symmetry algebra. J.Math.Phys.,

Vol.31, No.7, pp.1733{1738, 1990.

[10℄ N.M.Atakishiyev and S.K.Suslov. Dierene analogs of the harmoni osillator.

Theor.Math.Phys.,Vol.85, No.1, pp.1055{1062, 1991.

[11℄ N.M.Atakishiyev and S.K.Suslov. A realization of the q-harmoni osillator.

Theor.Math.Phys.,Vol.87, No.1, pp.442{444, 1991.

[12℄ R.Askey and S.K.Suslov. The q-harmoni osillator and an analogue of the Charlier

polynomials.J.Phys.A: Math.Gen.,Vol.26, No.15,pp.L693{L698,1993.

[13℄ R.Askeyand S.K.Suslov.The q-harmoniosillatorand theAl-Salamand Carlitz

poly-nomials. Lett.Math.Phys., Vol.29, No.2, pp.123{132, 1993.

[14℄ N.M.Atakishiyev, A.Frank,and K.B.Wolf.A simpledierenerealizationofthe

Heisen-bergq-algebra.J.Math.Phys., Vol.35,No.7, pp.3253{3260, 1994.

[15℄ N.M.Atakishiyev andSh.M.Nagiyev. Onthewave funtionsofa ovariant linear

osilla-tor. Theor.Math.Phys.,Vol.98, No.2, pp.162{166, 1994.

[16℄ R.Hinterding and J.Wess. q-deformed Hermite polynomials in q-quantum mehanis.

Eur.Phys.J.C,Vol.6,No.1, pp.183{186, 1999.

[17℄ W.Hahn. 

Uber Orthogonalpolynome, die q-Dierenzengleihungen genugen.

Math.Nahr., Vol.2,pp.4{34, 1949.

(11)

[19℄ D.S.Moak. The q-analogue of the Laguerre polynomials. J.Math.Anal.Appl., Vol.81,

No.1, pp.20{47,1981.

[20℄ S.Ramanujan. Some denite integrals. Messenger of Math., Vol.44, pp.10{18, 1915;

reprinted in: Colleted Papers of Srinivasa Ramanujan, G.H.Hardy, P.V.Seshu

Aiyar,and B.M.Wilson,eds., pp.53{58,Cambridge UniversityPress, Cambridge, 1927.

[21℄ T.S.Chihara. An Introdution to Orthogonal Polynomials, Gordon and Breah,

NewYork, 1978.

[22℄ N.I.Akhiezer.The Classial Moment Problem and Some Related Questions in

Analysis, Oliverand Boyd, Edinburgh,1965.

[23℄ J.A.Shohatand J.D.Tamarkin. The Problem of Moments, AmerianMathematial

Soiety,Providene,Rhode Island,1970.

[24℄ M.E.H.Ismail and M.Rahman. The q-Laguerre and related moment problems.

J.Math.Anal.Appl.,Vol.218,No.1, pp.155{174, 1998.

[25℄ J.S.Christiansen.Themomentproblemassoiatedwiththeq-Laguerrepolynomials.

Con-strutive Approximation,to appear.

[26℄ C.Berg.Onsome indeterminatemoment problemsformeasuresonageometri

progres-sion.J.Comp.Appl.Math.,Vol.99,No.1-2, pp.67{75,1998.

[27℄ C.Berg.Fromdisretetoabsolutelyontinuoussolutionsofindeterminatemoment

prob-lems.ArabJ.Math.Si., Vol.4, No.2, pp.1{18, 1998.

[28℄ G.Szego. Orthogonal Polynomials, Amer.Math.So.Coll.Pub., Vol.23, Amerian

Mathematial Soiety,Providene,Rhode Island,1975.

[29℄ C. Markett. The produt formulaand onvolution struture assoiatedwith the

gener-alizedHermitepolynomials.J.Approx.Theory,Vol.73, No.2, pp.199{217, 1993.

[30℄ M.Rosenblum.GeneralizedHermitepolynomialsandtheBose-likeosillatoralulus.In:

Operator Theory: Advanes and Appliations, pp. 369{396. Birkhauser, Basel,

1994.

[31℄ C.Berg and A.RuÆng. Generalized q-Hermite polynomials. Commun.Math.Phys.,

Referencias

Documento similar

The main goal of this work is to extend the Hamilton-Jacobi theory to different geometric frameworks (reduction, Poisson, almost-Poisson, presymplectic...) and obtain new ways,

The paper is structured as follows: In the next section, we briefly characterize the production technology and present the definition of the ML index as the geometric mean of

As in the main results, there is an initial negative impact on development on the year immediately after the flood event, which becomes larger in the following years, reaching

Instrument Stability is a Key Challenge to measuring the Largest Angular Scales. White noise of photon limited detector

teriza por dos factores, que vienen a determinar la especial responsabilidad que incumbe al Tribunal de Justicia en esta materia: de un lado, la inexistencia, en el

a symptom of disconnected agricultural and sanitation policies ...74 Policy cocktails for protecting coastal waters from land-based activities 84 Pathways to improved water

rous artworks, such as sonorou s poetry; d) instances of nOlHu1islie music, such as sonorous activiti es with soc ial, bu t not necessarily aes thetic, funct ions. Lango

On the other hand at Alalakh Level VII and at Mari, which are the sites in the Semitic world with the closest affinities to Minoan Crete, the language used was Old Babylonian,