• No se han encontrado resultados

Ciencia, tecnología y manejo de la información

N/A
N/A
Protected

Academic year: 2018

Share "Ciencia, tecnología y manejo de la información"

Copied!
7
0
0

Texto completo

(1)

PROGRAMAS:

División de Ingenierías, Arquitectura, y Química Ambiental

PLAN DE ESTUDIOS: ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO:

 

1.

DATOS GENERALES

ASIGNATURA/MÓDULO/SEMINARIO:   Ecuaciones Diferenciales

CÓDIGO:

913008 (Ing. Telecomunicaciones) 925302 (Ing. Mecatrónica)

934001 (Ing. Ambiental) 944009 (Ing. Industrial) 954015 (Química Ambiental) 994002 (Ing. Civil)

CRÉDITOS ACADÉMICOS:

3

COMPONENTE: Obligatorio CAMPO: Ciencias Básicas

ÁREA/MÓDULO: Matemáticas

SEMESTRE: IV MODALIDAD: PRESENCIAL

X

 

VIRTUAL BIMODAL

PRERREQUISITOS/CORREQUISITOS:

Algebra Líneal – Cálculo Diferencial - Cálculo Integral - Cálculo Vectorial FECHA DE ELABORACIÓN:

6 Diciembre 2013

VERSIÓN: 2

FECHA DE ACTUALIZACIÓN: 29de Febrero de 2016

2.

DISTRIBUCIÓN DEL TIEMPO ACADÉMICO

TIEMPO DE ACOMPAÑAMIENTO DOCENTE

TIEMPO DE TRABAJO

INDEPENDIENTE ESTUDIANTE

TOTAL TIEMPO

TRABAJO ACADÉMICO

Horas/semana: 6 Horas/semana: 3 144 Horas/semestre

Horas teóricas: 6

Horas prácticas: Horas/semestre: 48 N° DE SEMANAS

Horas/semestre: 96 16

3.

JUSTIFICACIÓN

La Universidad Santo Tomás Bucaramanga ofrece a través del Plan de Estudios de los programas académicos de Ingenierías y Química Ambiental en su componente básico la asignatura de Ecuaciones Diferenciales, hace parte del área de Ciencias Básicas, se cursa en el cuarto semestre del programa

académico que opte el estudiante y tiene como requisitos los presaberes de Algebra Lineal, Cálculo Diferencial, Cálculo Integral y Cálculo Vectorial

La asignatura tiene como objetivo poner en contacto al estudiante con los fundamentos matemáticos pertinentes para resolver ecuaciones diferenciales lineales de primer orden y de orden superior con coeficientes constantes; será capaz de aproximar soluciones utilizando series en el caso más general y proponer modelos matemáticos que aproximen el comportamiento real de ciertos sistemas físicos.

(2)

4.

METAS DE APRENDIZAJE

• Inducir al estudiante al uso de las técnicas estudiadas en el curso en la interpretación de problemas, en especial aquellos que sean modelados bajo variaciones de propiedades con respecto al tiempo y otras variables y realizar predicciones cualitativas y cuantitativas.

• Generar modelos matemáticos que involucren ecuaciones diferenciales ordinarias para describir fenómenos naturales, sociales y/o del área de la ingeniería.

• Encontrar la transformada de Laplace de cualquier función aplicando los principios teóricos y matemáticos establecidos en la asignatura para resolver problemas de ecuaciones diferenciales a través de la transformada de Laplace.

5.

PROBLEMAS A RESOLVER

¿Qué es una Ecuación Diferencial y cómo se clasifican?

¿Cuáles métodos de solución existen para resolver EDO de primer orden y cómo se utilizan? ¿Qué tipos de problemas de la vida cotidiana se pueden modelar mediante EDO de primer orden? ¿Cómo resolver EDO de orden superior y que tipos de problemas de la ingeniería se pueden modelar mediante ecuaciones diferenciales de este tipo?

¿Cómo resolver EDO utilizando la Transformada de Laplace?

6.

COMPETENCIAS

Competencia de énfasis

Apropia los principios, técnicas y procedimientos matemáticos de la asignatura para describir el comportamiento de fenómenos físicos analizando el sistema de ecuaciones diferenciales aplicado en la solución del problema y las predicciones cualitativas y cuantitativas hechas a partir de los resultados obtenidos.

 

Competencias específicas

• Aplica las teorías y principios de las ecuaciones diferenciales para inferir un modelamiento matemático y gráfico de los fenómenos físicos pretendiendo la sustentación teórica de temas que exigen una mayor formalidad matemática.

• Identifica los principales métodos para revolver problemas de valor inicial en ecuaciones diferenciales demostrando apropiación de temas específicos de la asignatura.

• Utiliza las herramientas computacionales para presentar en forma gráfica, numérica y procedimental las soluciones dadas a problemas de ecuaciones diferenciales, simulación de fenómenos físicos, graficación de soluciones de ecuaciones diferenciales y resolución a problemas de valor de la frontera, de valor inicial, y transformadas de Laplace.

Competencias Genéricas

Comunicación en lengua materna

Expresa sus argumentos matemáticos y científicos en el análisis y el razonamiento lógico para socializar con sus compañeros las soluciones propuestas por el estudiante a problemas dados en clase.

 

 

Pensamiento Matemático

(3)

diferentes representaciones de una situación de problema propuesta en clase facilitando el análisis y modelamiento de las soluciones de una situación problema.

 

• Evalúa la solución dada a un problema y las estrategias utilizadas para determinar el impacto de su implementación en el contexto o situación planteada desde los principios de las ecuaciones diferenciales.

 

• Emplea herramientas computacionales para solucionar situaciones y problemas propuestos desde la descripción de los fenómenos y sucesos que aplican las ecuaciones diferenciales.

 

Comunicación en lengua extranjera (inglés)

• Interpreta correctamente las instrucciones dadas en tutoriales de programas informáticos específi-cos para verificar si las soluciones encontradas a problemas propuestos en el aula son viables y técnicas.

Ciencia, tecnología y manejo de la información

 

Utiliza programas informáticos que resuelven problemas matemáticos utilizando en cada caso el entorno computacional adecuado y adquirir destrezas que le permiten una mejor comprensión de los contenidos matemáticos de la asignatura.

 

Pensamiento ciudadano

 

• Trabaja en equipo para el análisis y solución de problemas planteados en clase fortaleciendo valores como la responsabilidad, el trabajo colaborativo y la búsqueda de mejores formas de interacción y comunicación entre los integrantes del grupo

• Reconoce que a través del trabajo en equipo la buena comunicación es importante para analizar, proponer y debatir problemas en grupo pretendiendo un clima de respeto por las opiniones de los demás y de los marcos de referencia.

7. DISCIPLINAS QUE SE INTEGRAN

Matemáticas, Física, Electricidad y Magnetismo

8. TEORÍAS Y CONCEPTOS

Unidad 1. Ecuaciones Diferenciales (ED) Generalidades

1.1. Introducción.

1.2. Definición de una ED

1.3. Clasificación por tipo, orden y linealidad de ED 1.4. Isóclinas y curvas solución.

1.5. Clases de soluciones (implícitas y explicitas, familia de soluciones)

Unidad 2. Métodos de Solución para ED de Primer Orden

2.1. Problema de Valor Inicial (PVI) – Teorema de Unicidad 2.2. ED de Variables Separables.

2.3 Factor Integrante 2.4 ED Exactas

2.5 Sustituciones (ED de Bernoulli y Reducción a separación de Variables).

(4)

3.1. Trayectorias Ortogonales

3.2. Caída libre, lanzamiento vertical hacia arriba y lanzamiento vertical hacia abajo con rozamiento. 3.3. Crecimiento y decrecimiento (desintegración radioactiva, modelos de población, método del carbono

14).

3.4. Ley de Enfriamiento y Calentamiento de Newton. 3.5. Circuitos RL y RC.

3.6. Mezclas

Unidad 4. Ecuaciones Diferenciales de Orden Superior 4.1. Problemas con valores iniciales y con valores en la Frontera.

4.2. Soluciones generales de ED lineales, Principio de Superposición, Wronskiano.

4.3. Reducción de orden.

4.4. ED lineales homogéneas con coeficientes constantes.

4.5. EDS no homogéneas – Método de coeficientes indeterminados y Método de variación de parámetros.

4.6. EDde Cauchy – Euler.

Unidad 5. Aplicaciones de EDO de Orden Superior

5.1. Sistemas masa-resorte.

5.2. Movimiento armónico simple, amortiguado y forzado. 5.3. Fuerzas Boyantes.

5.4. Circuitos RLC.

Unidad 6. La Transformada de Laplace (TL)

6.1. Definición de TL.

6.2. Trasformada Inversa de Laplace. Fracciones parciales. 6.3. TL de derivadas, integrales y de una función periódica. 6.4. Teoremas de Traslación.

6.5. Solución de ED mediante TL.

9. METODOLOGÍA

 

Para desarrollar los procesos de formación académica de los estudiantes a partir del modelo pedagógico de la Universidad Santo Tomás, seccional Bucaramanga se aplicarán las siguientes estrategias metodológicas de la enseñanza pretendiendo con ello que el estudiante logre su proceso de aprendizaje.

Clase Participativa:Espacio interactivo que permite al estudiante tanto la fundamentación necesaria en cada uno de los temas como la aprehensión del conocimiento; espacio que se construye desde escenarios simulados por el profesor, en el cual las preguntas, las situaciones problémicas propues-tas y el uso de ejemplos permitirán al estudiante especular sobre sus saberes y pre-saberes hacien-do de su clase un ejercicio de participación activa que facilita el aprendizaje.

Solución de problemas en clase. Complemento de la clase expositiva, pues permite al estudiante afianzar la teoría previamente presentada y desde el trabajo en pequeños grupos de compañeros de

aula se logra además de una mejor interpretación de las temáticas expuestas un trabajo colaborativo que lo lleva alaprendizaje autónomo.

Tutorías: Espacios de interacción docente-estudiante en lugar distinto al aula de clase que propician

otras formas de acercamiento con el docente y favorecen el proceso enseñanza-aprendizajemedia

(5)

relación profesor-estudiante

Uso de software especializado: Permite que el estudiante experimente y aplique los conceptos aprendidos en la asignatura utilizando la simulación creada en programas informáticos específicos buscando con ello la interpretación y aplicación de algunos de los temas estudiados en la solución

de problemas reales.

Discusión, análisis y aplicación de determinados tópicos referentes a la asignatura, Espacio que pretende llevar al estudiante desde situaciones simuladas y recreadas por el docente a la form u-lación desoluciones, la argumentación de ideas basadas en temas estudiados que , y posteriorme n-te lo llevarán a aplicar sus saberes en las materias complementarias de su carrera.

Tiempo independiente. Existen trabajos que el estudiante debe realizar en un tiempo adicional al de las horas de clase y en ocasiones son utilizados por el docente no solo para orientar un determ i-nado tema sino para general en el estudiante estrategias de estudio que favorezcan en el estudiante su proceso de aprendizaje de la asignatura.

Seminario de investigación: Pretende que el estudiante profundice en temáticas de la asignatura y avance en la formación en investigación participando de: proyectos de aula, seminarios y proyectos específicos; la asignatura pertenece al área de Matemáticas del núcleo común de ciencias básicas, por tanto, el estudiante participará de manera activa en todos aquellos proyectos de formación en in-vestigación que determine el Departamento de Ciencias Básica evidenciando su participación m e-diante la entrega de actividades académicas que cumplen con los pre-requisitos que para este pro-ceso formativo se hayan establecido.

10. EVALUACIÓN

Para aprobar esta asignatura se requiere la participación activa y constructiva de cada estudiante en las sesiones de clase, el estudio independiente constante, así como la presentación de las evidencias de

aprendizaje solicitadas por el profesor en el desarrollo de la asignatura.

En el desarrollo de esta clase se hará uso de la autoevaluación, la cual se desarrollará al inicio de cada tema y tiene como finalidad conocer si los estudiantesdominan los presaberes que han adquirido sobre

cada una de lostópicos tratados en clase. La heteroevaluación la llevará a cabo el profesor y se

realizará tomando en cuenta las evidencias de aprendizaje y criterios de evaluación que se mencionan a

continuación:

Como criterios de aprendizaje cada estudiante deberá mostrar:

• Participación permanente en las clases presenciales, respuesta preguntas, solución de problemas y socialización de documentaciones bibliográficas y ponencias

• Actitud colaborativa y crítica ante los planteamientos de problemas que resulten duranteel desarrollo de la clase.

• Manifestaciones claras, a través de diseños de prototipos gráficos y en maquetas, sobre la

comprensión de los principios y teorías y las maneras de utilizar este conocimiento en situaciones cotidianas.

Los evidencias de evaluación para valorar las evidencias presentadas son:

• Desarrollo de talleres sobre problemas de aplicación.

• Argumentaciones orales y/o escritas utilizando un lenguaje técnico apropiado, mostrando una

comprensión de la clase, de las lecturas recomendadas y de los problemas planteados.

• Solución a las evaluaciones diseñadas por el docente para cada corte académico.

.

(6)

que los docentes en cada corte deben evaluar teniendo en cuenta los porcentajes que se muestran en

la siguiente tabla; las fechas de corte serán asignadas de acuerdo al cronograma semestral de la universidad.

CORTES

ACADEMICOS

PORCENTAJES DE VALORACION

1º (35%)

(70%) La evaluación del corte.

(30%) Trabajos, Quices, Talleres.

2º (35%)

(70%) La evaluación del corte.

(30%) Trabajos, Quices, Talleres.

3º (30%)

(70%) La evaluación del corte.

(30%) Trabajos, Quices, Talleres.

Cuando el Departamento de Ciencias Básicas determine la realización de jornadas o eventos de carácter investigativo los proyectos de los estudiantes participantes que cumplan con el procedimiento

investigativo representado en la formulación, demostración y sustentación se del proyecto se calificarán

aplicando los porcentajes de valoración que se dan a continuación

Si la participación del estudiante consiste en la asistencia a conferencias, exposiciones, conversatorio, programados dentro de los eventos de ciencia, investigación y tecnología el corte en el cual se realice la actividad se valorará aplicando los siguientes porcentajes

• examen final: 60 %

• actividades académicas de aula: 20 %

• Asistencia a eventos o jornadas de investigación, ciencia y tecnología: 20 %

Si el estudiante no participa en estos eventos en ninguna de las anteriores modalidades el corte acadé-mico en el cual se realice la actividad se valorará aplicando la tabla de porcentajes que ha establecido la División de Ingenierías y que se denomina Cortes Académicos y Porcentajes de Valoración que se

en-cuentra en este aparte del Plan de Asignatura

CORTE PARTICIPEN EN EVENTOS DE CIENCIA, INVESTIGACIÓN PORCENTAJES DE CALIFICACION PARA QUIENES

Y TECNOLOGÍA. Porcentaje TOTAL

1° Parcial. Actividades académicas de aula. 70% 30 % 35 %

100 % 2°

Parcial.

Actividades académicas de aula.

Entrega del primer avance. 60 %

10 % 30 %

35 %

Parcial.

Actividades académicas de aula. Presentación de proyecto.

60 % 10 % 30 %

30 %

11. RECURSOS

BIBLIOGRAFÍA BÁSICA

 

 

1. ZILL, D. G. Ecuaciones diferenciales con aplicaciones de modelado. 9 ed. Cenage Learning. 2009. # local de clasificación: 515.35 Z69e

2. SIMMONS, GEORGE F. Ecuaciones diferenciales: Teoría Técnica y Práctica. Madrid: McGraw-Hill,

2007. # local de clasificación: 515.35 S592e

3. LÓPEZ, CARLOTA. Ecuaaciones diferenciales oridnarias de un primer curso. Escuela Colombiana

de Ingeniería. 2008. 515.352 L864e

4. LEDDER, GLENN. Ecuaciones diferenciales: un enfoque de modelado. México: McGraw-Hill, 2006.

# local de clasificación: 515.35 L472e.

(7)

clasificación: 515.35 S755e

6. AYRES, FRANK. Ecuaciones Diferenciales. Mexico, Mc Graw Hill. 1997.# Local de clasificación: 515.35 A985e

ENLACES DE INTERÉS

http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-

fall

-2011/

http://www.scilab.org/

 

http://www.gnu.org/software/octave/

http://ecuaciondiferencialejerciciosresueltos.com/simulacion-

graficacion

-aplicacion-

ecuaciones

-diferenciales-sistemas-fisicos-sage-octave-maxima-

python

http://ecuaciondiferencialejerciciosresueltos.com

MEDIOS  AUDIOVISUALES  

 

http://www.unicoos.com/leccion/matematicas/universidad/calculo/ecuaciones

-

diferenciales

http://noticias.universia.edu.pe/educacion/noticia/2015/09/10/1131012/matematicas-

39

-

videos

-aprender-ecuaciones-diferenciales.html

http://cursos.aiu.edu/Ecuacion%20Diferenciales.html

 

SOFTWARE, AULAS VIRTUALES Y OTROS ESPACIOS ELECTRÓNICOS

 

MATLAB, SCILAB, GNU OCTAVE

LABORATORIOS Y/O SITIOS DE PRÁCTICA

 

No Aplica

EQUIPOS Y MATERIALES

 

Referencias

Documento similar

La campaña ha consistido en la revisión del etiquetado e instrucciones de uso de todos los ter- mómetros digitales comunicados, así como de la documentación técnica adicional de

El Tratado de Maastricht introduce como elemento fundamental de la Unión Europea la cooperación en los ámbitos de la justicia y en los asuntos de interior (JAI) y establece la doble

En cuanto a las ecuaciones diferenciales lineales nos ocuparemos de aquéllas que tienen coeficientes constantes, para pasar después al método de los coefi- cientes indeterminados a

En primer lugar, sería interesante obtener las matrices del sistema para e ≥ 3, así como extender los modelos a funciones de forma distintas a las consideradas en este trabajo..

Las ecuaciones de Lotka-Volterra[27][14] son un sistema de ecuaciones diferenciales no lineales de primer orden en las cuales se estudia la dinámica poblacional entre varias

La aplicación de las Buenas Prácticas de Producción de Miel en el Manejo Integral en l Manejo Integral de los Apiarios y de las Colonias de abejas aplicada por los

 Tejidos de origen humano o sus derivados que sean inviables o hayan sido transformados en inviables con una función accesoria..  Células de origen humano o sus derivados que

Fuente de emisión secundaria que afecta a la estación: Combustión en sector residencial y comercial Distancia a la primera vía de tráfico: 3 metros (15 m de ancho)..