• No se han encontrado resultados

Sistemas de conmutacion de Telefonía y Redes

N/A
N/A
Protected

Academic year: 2020

Share "Sistemas de conmutacion de Telefonía y Redes"

Copied!
108
0
0

Texto completo

(1)

INTRODUCCION

A través de del tiempo las técnicas de comunicación entre las personas se han ido mejorando e inclusive se desarrollan nuevos métodos de comunicación, en la actualidad la meta es poder trasmitir grandes cantidades de información ya sea de voz, datos e imagen, esto es la meta de todos aquellos que se dedican a las comunicaciones.

Hoy en día el translado y manejo de información ya es muy común, por eso el avance de la tecnología nos ha llevado a la revolución de las comunicaciones, en donde a través de las REDES se puede transmitir e intercambiar datos. Es esta tesina se describen las características y funcionamiento de las redes WAN, pero para comprender este tipo de red se necesitaran ver varios conceptos pasando por redes LAN y redes MAN, que el conjunto de estas dos anteriores dan nacimiento a lo que son las redes WAN.

Esto nos lleva a que el lector aprenda todo lo que se refiere a redes desde lo más básico hasta lo mas complejo. Hablaremos desde que es una red, como se conforma, normas, estándares, topología, cableado, señalización, equipo de computo, etc., así llevando al lector a que conozca y aprenda lo referente a Redes de computo.

Las redes van desde redes sencillas hasta redes muy complejas, y esto también repercute en el precio, pero si lo vemos a largo plazo, esta inversión valdrá la pena ya que se ahorrara mucho dinero.

(2)

Capitulo I

CONCEPTOS BÁSICOS

I. ANTECEDENTES

Transmisión de Datos

Comunicación es una palabra muy común para todos nosotros, encierra en esencia la posibilidad de transmitir un mensaje a una persona o a varias; actualmente la comunicación no solo es eso, sino que, además, engloba una serie de conceptos que nos permiten ya no solo enviar un mensaje a un ser vivo, si no ahora se entablan conversaciones entre computadoras, circuitos, enrutadores, mainframes, entre otros.

Toda comunicación ya sea entre computadoras o entre seres humanos, contiene los siguientes elementos:

a) Transmisor.- Es aquel ente que no puede existir sin los otros integrantes del sistema al igual que los otros miembros, cuya tarea principal es la de enviar información.

b) Mensaje.- Es la información que se quiere transmitir o la información que recibimos por el transmisor.

c) Canal de Transmisión.- Es el medio por el cual enviamos o recibimos la información. d) Receptor.- Es aquel que recibe la información.

En la actualidad la forma en que nos comunicamos es tan diversa y tan amplia que parece increíble que alguien que se encuentra en otro país, pueda platicar con nosotros, ya sea por teléfono -que es lo más sencillo- o a través de una computadora --que ya no es tan increíble-. Gracias a los módems, los cuales son equipos que se encargan de cambiar las señales digitales en señales analógicas, ya que las primeras no pueden ser transferidas a largas distancias.

Para realizar una transmisión de datos exitosa se requiere dos factores principalmente:

a) Calidad de las señales que está siendo transmitida. b) Características del medio de transmisión.

Modulación

De una manera sencilla la modulación es la conversión de señales digitales en señales analógicas.

La mayoría de los sistemas de comunicación que permiten la difusión de información y la intercomunicación de personas entre si, a través de grandes distancias, se basan en la aplicación de la modulación. Las transmisiones moduladas en amplitud o en frecuencia permiten enviar las señales de radio, teléfono y televisión, entre otras, interpretando el mensaje en forma de audio y/o video. Lo anterior se realiza de la siguiente manera: la señal que viaja es analógica llamada portadora, a la cual, se le modifica una de sus características de acuerdo con la información digital que se pretende transmitir. La señal portadora -o carrier como se le conoce- es normalmente una onda senoidal, la cual esta definida por tres características: amplitud, frecuencia y fase.

De esta manera los sistemas básicos de modulación son:

(3)

es muy susceptible a las interferencias de la línea.

b) Modulación en Frecuencia.- La modulación de frecuencia se suele utilizar para velocidades de transmisión iguales o inferiores a 1200 bps.

c) Modulación de Fase.- La modulación de fase es también conocida como PSK. La modulación PSK tiene una mayor sensibilidad al ruido que la DPSK por lo que generalmente se emplea el ultimo sistema. La modulación de fase el sistema utilizado para velocidades superiores a 1200 bps aunque la mayoría de los casos para conseguir velocidades superiores, se utiliza la modulación de fase combinada con la modulación de amplitud. (En el Apéndice A, se puede encontrar mayor información sobre las técnicas de modulación y demodulación utilizadas en comunicaciones)

Codificación

La información O y 1 utilizadas por las computadoras, no tienen ningún sentido en si, si no representan una información útil para el usuario. Para que esos dígitos tengan una relación con una aplicación real del usuario, llámese voz, datos o video, se crearon los códigos, siendo este una tabla de correspondencia que relaciona una información de voz, datos o video, con una información binaria.

En el caso de los signos alfanuméricos, en la historia han ido apareciendo distintos tipos de códigos, dependiendo de la necesidad que se ha tenido en cada momento. El código BOUDOT,

utilizado por las redes telemáticas establecidas hace unas décadas, representa las letras del alfabeto, los números, signos de puntuación y determinados comandos de control con tan solo cinco bits.

El código EBCDIC (Extended Binary Coded Decimal Interchange Code) utilizado por las computadoras de IBM, diferencia las letras mayúsculas de las minúsculas, contiene mas signos de puntuación además de un completo juego de comandos de control. En este caso se emplean 8 bits para representar cada símbolo.

Finalmente las PCs utilizan el código ASCII (American Standar Code for Information Iterchange). El código ASCII representa con 7 bits las letras mayúsculas y minúsculas, los números, signos de puntuación y caracteres de control. Existe también un código ASCII extendido de 8 bits por carácter, el cual incorpora una gran variedad de símbolos gráficos. Este código es el más utilizado por el sistema operativo MS DOS.

Características de la Transmisión de Datos.

Lo necesario para transmitir datos es, en general un par de PCs, con sus respectivos módems y un cable o una línea telefónica. Sin embargo, cuando se habla de transmisión de datos en general, no siempre es una PC el origen o el destino de la información, si no que a veces el terminal destino de la información es una simple impresora, o un complicado sistema de telecontrol. Por ese motivo, cuando se habla en forma general de la transmisión de datos se involucran los siguientes términos:

DTE*: Equipo terminal de datos, este equipo puede ser cualquiera, siempre y cuando sea la mente o el destino de los datos.

DCE*: Equipo de terminación del circuito de datos. Es el equipo que se encarga de transformar las señales portadoras de la información procedentes del DTE en otras que sean susceptibles de ser enviadas hasta el DTE remoto a través de los medios de comunicación existentes.

(4)

Apéndice E, se trata de manera más extensa el tema de los medios de Transmisión)

Un punto importante en la transmisión de datos, es la velocidad que se maneja durante la transmisión. En general, la velocidad de transmisión de información se mide por el numero de bit transmitidos en un segmento o bits por segundo (bps). Así, existen dos posibles medidas de transmisión. Por un lado, se puede medir la velocidad con la que son transmitidos los bits de la fuente; a esta medida se le conoce como velocidad de transferencia de datos, y representa la cantidad de información (no de control) que se envía en una unidad de tiempo. Por otro lado se puede medir la velocidad con que son transmitidos los bits por la terminal; a esta medida se le llama velocidad de transmisión serie, y representa la cantidad de bit de información y de control que la terminal le entrega al módem por unidad de tiempo. La velocidad de transmisión serie siempre es mayor que la velocidad de transmisión de datos, la diferencia puede ser mayor o menor dependiendo de la eficiencia del protocolo.

Teóricamente la velocidad que nos interesa es la velocidad de transferencia de datos, pero esa medida es difícil de realizar, ya que depende del protocolo utilizado. De manera practica la que siempre se utiliza es la velocidad de transmisión serie ya que nos representa la velocidad con la que la terminal le entrega los datos al módem y al mismo tiempo, la velocidad en que el módem transfiere los datos.

Cuando hablamos de capacidad de transmisión se da con el ancho de banda siendo este la diferencia entre la frecuencia mayor y la frecuencia menor que puede ser transmitida por un medio de comunicación en el caso de la línea telefónica, el ancho de banda es 3400-400= 3000 Hz

.

(También puede encontrar una explicación del ancho de banda en el Apéndice B)

La comunicación en general puede ser en tres formas:

a) Simplex: Siendo donde la comunicación se realiza en un solo sentido. A este tipo de comunicación también se le conoce como unidireccional.

b) Half Dúplex: La comunicación de la información se lleva a cabo en ambos sentidos, pero simultáneamente. La información circula en sentido o en otro, pero no al mismo tiempo.

c) Full Dúplex: es donde la comunicación se puede producir en ambos sentidos simultáneamente. (Estos Modos de Comunicación se explican a detalle en el Apéndice C).

En la comunicación entre terminales se debe de contar con procedimientos que permitan identificar que carácter de la información, son recibidos y el orden. La técnica que nos permite lo anterior se conoce como sincronismo; así contamos con dos formas de sincronía:

a) Asíncrona: se requiere que para cada carácter emitido, se transmita un bit de arranque seguido por 7 u 8 bits de información que identifiquen al carácter en código ASCII, y al terminar este, se envíe un bit de parada.

b) Síncrona: Antes de realizar la transferencia de información se envían una serie de caracteres que permiten el sincronismo entre las dos terminales de comunicación. (Si desea mayor información, refiérase al Apéndice D -Modos de Transmisión-)

Finalmente otra de las características de la transmisión de datos, es el medio por donde se transmiten, así se tienen dos tipos de medios*:

(5)

1) Medios Físicos.- Par trenzado, cable coaxial, fibra óptica.

2) Medios No Físicos.- En este caso es a través de ondas electromagnéticas, así en este tipo de transmisión de lo que hay que preocuparse es de la frecuencia de transmisión, mientras mas alta es la frecuencia es mas direccional. Por lo cual se tienen: Las microondas y Radio Frecuencia. (En el Apéndice E, se trata de manera más extensa el tema de los medios de Transmisión).

1.2 CONCEPTOS BÁSICOS DE TELEFONÍA

En 1876, 32 años después de que se instalo la primera línea telegráfica, Alexander Graham Bell patentaba un nuevo aparato llamado teléfono. El teléfono común, tal como se conoce hoy en día, es un aparto que se conecta al mundo exterior por medio de un par de alambres. Consiste de un microteléfono y su base con un dispositivo de señalización que incluye un teclado para marcar. El microteléfono consiste de dos transductores electroacústicos, el audífono o receptor y el micrófono transmisor. Consiste también de un circuito de efecto local que permite retroalimentar hacia el receptor parte de la energía que se transmite.

Posteriormente para interconectar estos dispositivos se crearon las centrales telefónicas, que constan de un equipo de comunicación que permite seleccionar al abonado (persona) a quien se desea llamar, y de un equipo de transmisión, que transmite las señales de unas centrales a otras. Los medios de transmisión entre centrales son muy variados, y van desde cables de pares de hilos de cobre, hasta fibra óptica o comunicaciones por satélite, pasando por los cables coaxiales o las transmisiones de radio. De esta manera la primera central telefónica se puso en funcionamiento en Enero de 1878 en Nuw Heaven, USA; esta central prestaba servicio a 21 abonados; desde entonces las redes telefónicas han crecido considerablemente, hasta alcanzar la expansión e importancia mundial que actualmente tienen.

Tecnologías de Conmutación.

A través de la historia de las centrales telefónicas, estas han variado en su sistema de conmutación de llamadas o matriz de conmutación, esto es, la manera en como se crea una ruta por la cual se interconectaran dos usuarios o abonados, el que llama y el que recibe la llamada. De esta manera se han venido dando las siguientes generaciones en las centrales telefónicas.

Primera.

En la primera generación las funciones de conmutación y control se hacían manualmente por un operador que usaba una pieza de cable (también conocido como clavija), que físicamente completaba cada ruta independiente a través del conmutador conectando la punta dentro de un punto de acceso (similar a un jack) para cada destino, en un panel central (tablero). Las conexiones se mantenían hasta que el operador desconectaba los cables.

Segunda.

En la segunda generación, la función de enrutador se realiza mecánicamente cerrando el circuito por medio de relays en un patrón que creaba una ruta física interconectando los lugares. La conexión se mantenía hasta que algún relay se "abría". Las centrales crecieron y el numero de sus partes mecánicas también, por ende, el consumo de energía. Posteriormente los relays mecánicos fueron reemplazados por equipo electromecánico.

(6)

Una ruta se creaba cerrando relays en el apropiado punto de cruce (cross point) para conectar las dos puntas de una llamada. Se podían realizar llamadas simultaneas con solo habilitar múltiples puntos de cruce al mismo tiempo.

Los conmutadores de la segunda generación ya no utilizaban la conmutación de división de espacios sino que utilizaban conmutación de división de tiempos. En vez de utilizar rutas separadas para cada llamada, la conmutación por división de tiempo compartía una sola ruta de alta velocidad (bus) para todas las llamadas. Las muestras que se tomaban de la señal de voz analógica eran convertidas a pulsos y transmitidas a través del conmutador en una rotación continua de intervalos o ranuras de tiempo. Durante un espacio de tiempo (TS: time slot), un par de abonados se conectan a un bus aproximadamente por lµs (micro segundo), permitiendo el intercambio de señales de voz (muestras). Subsecuentemente los TS's llevan otras conexiones.

Tercera.

La tercera generación se caracterizo por el uso de la electrónica digital y técnicas de conmutación. Esto requiere una conversión de señales analógicas a representaciones digitales antes de pasar a través de la central. En la técnica conocida como PCM cada muestra de amplitud de un pulso modulado en amplitud (PAM) es cuantizado y designado con un valor en el código digital.

Un equipo denominado CODEC* transforma la señal de analógica a digital y de digital a analógica. Los dos mayores componentes fueron digitales los cuales son pregrabados en control y conmutación digital. Cuando la conmutación digital se introdujo, los CODEC's tenían un alto costo, por lo cual eran instalados directamente como equipos compartidos, en la central de conmutación. En la actualidad los CODEC tienen menor costo, por lo que se instalan directamente en el aparato telefónico, lo que implica que hasta ese punto la señal es digital.

De esta manera la tercera generación marco el inicio del control, de la conmutación y de la transmisión digital.

Algunos fabricantes hicieron un esfuerzo para realizar lo que algunos llaman "cuarta generación". Esta generación no representa una etapa tecnológica distinta de las tres anteriores, sin embargo se realizo un cambio significativo, la integración de voz y datos a través de la red telefónica.

Conmutadores o PBX

La mayoría de las empresas en la actualidad requieren de sistemas que les brinden las mismas facilidades de una central telefónica (y más aún) pero de manera privada. Esto es, un equipo que les permita establecer llamadas dentro de una misma área: llámese edificio, nave industrial, ó bodega; a distancias considerables y al mismo tiempo tengan el acceso a realizar llamadas a través de la red pública telefónica.

Los equipos anteriormente descritos son conocidos como PBX o conmutador privado. Los conmutadores privados contienen los siguientes componentes básicos:

a) Control de sistema:

El procesador del control consiste de un sistema completamente computarizado con:

un complemento de memoria, un equipo periférico para entrada y salida, y, finalmente el software* del sistema.

(7)

• Asignan recursos al realizar las llamadas.

• Mantiene las locaciones realmente necesarias durante una llamada (especialmente las listas de memoria que controlan la asignación de la capacidad de conmutación para conversaciones).

• Libera los recursos utilizados cuando se termina una llamada.

• Revisa el buen funcionamiento de varios componentes.

• Recaba datos operacionales para la presentación de reportes o análisis de llamadas.

El procesador realiza las funciones de mantenimiento tanto en software como en hardware, con las cuales se tiene una herramienta eficaz de monitoreo sobre fallas posibles o inherentes sobre el equipo.

Una importante ventaja en los sistemas de conmutación controlados por procesadores, es la capacidad para instalar nuevas funciones y realizar cambios de software (up grade) sin modificar la operación del sistema.

Este tipo de equipos cuenta con sistemas de protección denominados redundancia en control o en fuentes de alimentación, esto es, contar con dos CPU para el control y con una batería de respaldo que permite alimentar al equipo en caso de falla de la energía eléctrica.

b) Matriz de conmutación.

Las matrices de conmutación usadas en los sistemas PBX son tanto por división de espacio como por división de tiempo. Por división de espacio se encuentran los sistemas electromecánicos viejos y provee conexiones físicas que pueden ser seguidas de un punto al otro a través de una recta discreta en la matriz.

En la actualidad la tecnología de división de tiempo es la mas empleada en el diseño de matrices de conmutación tanto en sistemas analógicos como digitales.

La señal de voz en un sistema TDM es muestreada en el tiempo y conectada en ranuras de tiempo que viajan en un bus de alta velocidad al sistema.

c) Internase de troncales.

La internase que existe entre los PBX pasando a través de la red telefónica pública es la troncal. Estas troncales pueden ser de entrada y/o salida. Así se pueden interconectar a dos o mas sistemas PBX directamente.

La marcación directa de troncales provee un servicio directo a los usuarios saltándose a las operadoras, aumentando y mejorando el servicio para usuarios en grandes sistemas.

d) Teléfonos.

Siendo la internase entre el usuario y el sistema PBX. Además de estos equipos, actualmente se pueden conectar terminales de datos ya sean tontas o una Workstation; la tendencia actual en el mercado de PBX es alejarse de los teléfonos de una línea (single line) convencionales y acercarse cada vez mas a los aparatos electrónicos propietarios que incrementan las capacidades de programación. Este tipo de aparatos da una serie de teclas programables al usuario, que incrementan el uso de nuevas facilidades, además de ofrecer las ventajas siguientes:

(8)

Información en un display

Programación controlada por los usuarios

Algunos sistemas de PBX soportan voz y datos integrados (IVDTs*) básicamente el IVDT combina el display y el teclado de una terminal de datos con la funcionalidad de un teléfono.

Una diferencia que puede ser hecha entre diferentes sistemas de PBX es la arquitectura de la locación y las opciones de interconexión entre el procesador de control, la conmutación y el acceso a las interfaces. Estos elementos pueden ser colocados en un solo lugar.

Se consideran de esta forma dos tipos de sistema, uno centralizado y otro distribuido. Un sistema centralizado nos indica que los elementos del conmutador pueden ser colocados un mismo lugar o nodo, por lo tanto las funciones de conmutación, el control de red para el procesamiento de llamadas y administración de los recursos, incluyendo el acceso a las interfaces son centralizadas.

Una variación interesante de la arquitectura centralizada es conjuntar solo los accesos a interfaces en gabinetes separados que pueden ser colocados en otro lugar lejos del sitio central. Esto reduce la longitud de cables entre cada estación y su interfase hacia la red, pero introduce unas conexiones especiales entre los gabinetes de interfase y el conmutador central. Los gabinetes remotos no son considerados como nodos debido a que ellos por si solos no pueden operar en caso de que el enlace quedara fuera de servicio.

Por otro lado un sistema distribuido consiste en varios nodos distintos que tienen las funciones y operan como un PBX. Cada uno tiene su propio procesador de control, elemento de conmutación, y acceso a interfaces. Si cualquier enlace fallara, el nodo remoto seguiría teniendo servicios aunque no tendrá directamente acceso a usuarios en otros nodos.

Algunas otras características de los conmutadores son:

a) Capacidad.

La capacidad de proveer servicios simultáneos a múltiples usuarios es afectada por la arquitectura del conmutador. Esto, se caracteriza por el número de conversaciones que se realizan al mismo tiempo. Así, aparece el PBX no bloqueable, que significa que el conmutador puede manejar conversaciones simultáneas entre todos los usuarios posibles, teniendo suficientes rutas para llevar todo el tráfico. Algunos PBX son diseñados no bloqueables que físicamente es imposible conectar mas usuarios de los que el sistema puede soportar simultáneamente; mientras que otros son configurados como no bloqueables para que no sean posibles mas comunicaciones que las que el conmutador pueda manejar en un tiempo.

b) Disponibilidad.

El servicio efectivo a los usuarios requiere que los recursos siempre estén disponibles. Sistemas centralizados proveen acceso universal a los recursos por la ubicación de sus accesos a interfaces, estos sistemas ofrecen una gran disponibilidad porque solo hay un punto donde toda la información es controlada y la ubicación de los recursos del sistema.

c) Confiabilidad.

(9)

d) Marcación dentro del sistema PBX

Dentro de un PBX la marcación se hace por medio de extensiones que generalmente están conformadas de tres a siete dígitos, la asignación de la cantidad se hace debido a una serie de consideraciones que se mencionaran posteriormente.

Cuando un abonado de la red pública requiere establecer una llamada con algún usuario de un sistema PBX, este marcara un número, que en forma general comunica directamente con una operadora, quien es la encargada de transferir la llamada con el usuario en cuestión.

e) Facilidades del sistema.

Terminal de administración: es una terminal de datos conectada directamente al procesador de control del PBX en vez de una interfase de acceso. El administrador del PBX puede realizar las siguientes funciones:

1) Cambiar la base de datos del sistema, agregar, actualizar la información de los usuarios y clases de servicios.

2) Efectuar reportes de tráfico y estadísticas.

3) Realizar diagnósticos y pruebas y analizar los resultados.

Consola de operadora.- Las funciones de una consola son: transfiere llamadas de la red pública al usuario apropiado; provee información y asistencia en el directorio y teniendo algunas otras facilidades. La consola debe permitir un rápido manejo de una variedad de llamadas con un sistema de identificación del sistema activado como el número de llamadas en espera, para ser contestadas, estado de los usuarios (libre u ocupado).

Algunas consolas ofrecen funciones de administración como alarmas (que indican fallas en el sistema) y detección de problemas, además de capacidad de pruebas.

Desvío de llamadas (call forward): Cuando se marca un número en específico, este timbrara en otro numero previamente asignado.

Llamada en espera (call waiting): Esta facilidad indica a uno de los dos abonados que están en una conversación que existe una llamada que desea establecerse con él, pero que es necesario que cuelgue la primera.

Retrollamada (camp on): Permite que un usuario al encontrar ocupado un número quede en espera, para poder establecer la llamada. Cuando el usuario que tiene ocupada su línea cuelga, automáticamente a través de un tono, se avisa al primer usuario que ya es posible establecer su llamada.

Captura de llamada (pik up): Cuando se cuenta con varios aparatos telefónicos en una misma área es posible que si entra una llamada a uno de ellos y el usuario no se encuentra, automáticamente después de una cierta cantidad de timbrazos, la llamada sea transferida a otro teléfono; o que de manera manual otro usuario (a través de una tecla especifica o por un código) forcé a la llamada a entrar en su teléfono.

Marcación rápida (speed dialling): La mayoría de los teléfonos digitales (ya sean propietarios o públicos) poseen una pequeña memoria a través de la cual se pueden grabar algunos números telefónicos, para tener acceso a estos números se requieren de teclas específicas o de algún código.

(10)

usuarios, se les puede restringir el uso de su aparato telefónico, esto es, que no todos puedan hacer llamadas de larga distancia o locales (fuera del conmutador) y que solo puedan establecer comunicación con usuarios del mismo PBX.

Números directos DID (direct inword dialling): El DID es usado para describir un proceso a través del cual un abonado que marca a través de la red publica al entrar a un sistema PBX propietario, no requiere pasar directamente con una operadora que le comunique a la extensión requerida, sino que el PBX reconoce estos dígitos y los transfiere directamente con el usuario que es llamado.

A la vez que se estaban desarrollando las tecnologías para las centrales telefónicas, también se optimizaba la estructura de la central basándose en el trafico que se generaba debido a la ocupación de los canales telefónicos por parte de los usuarios. La unidad que se empleo para las mediciones del tráfico fue el erlang.

El trafico promedio por línea es de 0.1 erlang a la hora pico, lo que significa que cada línea esta ocupada un promedio de 6 minutos por hora.

Lo anterior hizo que en una central se considerara una etapa de concentración para reducir el número de órganos de conmutación y una etapa de expansión para tener acceso a cualquier abonado. Uno de los aspectos mas importantes en la practica de las telecomunicaciones es la determinación del numero de troncales que se requiere en la ruta o conexión entre dos centrales, lo que se conoce como dimensionamiento de la ruta. Para estar en posibilidad de dimensionar correctamente una ruta se deberá tener la idea de su posible utilización, es decir, el número de conversaciones que intentarán establecerse al mismo tiempo sobre dicha ruta. La utilización de una ruta o de un conmutador lleva directamente a los dominios del trafico, dicha utilización se puede definir mediante dos parámetros:

a) Razón de llamadas.

Es decir en número de veces que se utiliza una ruta o trayectoria de trafico por unidad de tiempo.

b) Tiempo de retención.

Es decir, la duración de la ocupación de la trayectoria de tráfico por llamada.

Redes Jerárquicas

El gran numero de usuarios y el alto trafico que una red telefónica tiene que soportar en la actualidad a llevado a que sea necesario agruparlos por áreas geográficas y hacerlos depender de varias centrales de conmutación que tengan acceso entre sí o a través de otras. Por ello aparece el termino de "jerarquía"; dado que el número máximo de usuarios que una central admite es limitado, mayor o menor dependiendo de su categoría, una vez que este se supera es necesario el curso de más centrales de conmutación para atenderlos, y cuando el trafico de estas últimas centrales sobrepasa su nivel, se requiere de otra central que pueda soportar esta afluencia de llamadas.

(11)

b) Redes Interurbanas (CI): Esta es la encargada de proporcionar los enlaces entre centrales localizadas en diferentes ciudades, ello hace que las distancias sean mayores y se deban de utilizar cables de distintas características a los anteriormente mencionados.

c) Redes Internacionales: Para dar curso al tráfico entre diferentes países se necesita de la interconexión entre las centrales internacionales, encargadas de encaminar el mismo. Esto se realiza mediante enlaces de alta capacidad (varios miles de circuitos full-duplex) y fíabilidad, constituidos fundamentalmente por enlaces terrestres submarinos y vía satélite.

Una red jerárquica tiene niveles asociados a los ordenes de importancia de las centrales que constituyen la red y ciertas restricciones con relación al flujo de tráfico.

La recomendación Q.13 del CCITT (ITÜ)* sugiere el criterio de lej ano-a-cercano con el cual la ruta de primera elección para el establecimiento de la llamada es para conectar la llamada lo mas lejos posible desde su origen usando la ruta básica para medir las distancias. La siguiente lección es la segunda mejor y así etc.

Señalización

De un modo general, se puede definir a la señalización de un área de conmutación como un intercambio de información entre elementos que constituyen la red, que permiten obtener para cada enlace establecido, las funciones básicas de interconexión entre usuarios y además de facilitar una serie de servicios o funciones suplementarias.

Dentro de una central telefónica o un conmutador, existen diferentes tipos de señalización:

a) Señalización entre abonados.

Los abonados se conectan a la red de dos maneras:

• Conexión analógica.- Su estructura esta totalmente normalizada a nivel mundial, basándose en una interfase física de dos hilos, la señalización de los procesos de mareaje, contestación, establecimiento de llamada y colgado, se realiza mediante detección de alta o baja resistencia en un bucle*, envío desde la red de la corriente de llamada, tonos de aviso de distinta frecuencia y cadencia para información del usuario, entre otros.

Para la indicación del abonado a la red de conexión deseado o el servicio suplementario requerido se utilizan dos tipos de señalización: impulsos dedicados de apertura y cierre del bucle, con temporizaciones definidas, y envío de códigos de multifrecuencia según la recomendación Q.23 del CCITT*.

• Conexión digital.- Este tipo de conexión aparece definido en las recomendaciones del CCITT cuando se estructura la red de servicios integrados. Consiste en una internase normalizada a cuatro hilos, con señalización definida en las recomendaciones 1.440, 1,441,1.450 e 1.451*, constando básicamente de dos canales B (64 Kbps) y de un canal D (16 Kbps), en la que cada canal B puede emplearse independientemente para soportar voz o datos y el canal D se utiliza para señalización.

b) Señalización entre centrales.

(12)

información de señalización de un conjunto de canales, denominada señalización por canal asociado.

• Señalización por canal asociado (CAS -channel associated signalling).- En la señalización entre centrales la información intercambiada puede ser de dos clases:

señalización de línea y señalización de registrador. La de línea contiene información sobre los distintos estados en que se encuentra el canal de enlace entre centrales a lo largo de la llamada (p. Ej. disponibilidad, congestión, toma, desconexión.), mientras que la de registrador es la información que se intercambian los órganos de control de las centrales y que permiten el establecimiento de la llamada y la utilización de los servicios suplementarios.

Dentro de estos tipos de señalización destacamos los siguientes:

• Señalización en corriente continua/impulsos directos.- Este tipo exige que el enlace entre centrales se realice por medios físicos o con módem de canal especializados a tres hilos. La señalización de línea se realiza mediante variaciones de resistencia de bucle e inversiones de polaridad. La de registro consiste en aperturas y cierres de bucle con temporizaciones determinadas.

 Señalización en corriente continua / multifrecuencia.- En este tipo de señalización en línea es la misma que en el caso anterior, realizándose la de registrador por intercambio de tonos multifrecuencia codificados según la recomendación Q.23 del CCITT.

 Señalización E y M / impulsos directos.- Este tipo utiliza para la señalización los hilos E y M (ear and Mouth, de recepción y transmisión) proporcionados por el medio de transmisión analógico o múltiplex digital. Los estados de la línea así como las informaciones de registros se envían mediante determinadas codificaciones que dan a diferentes subtipos de señalización.

 Señalización E y M / multifrecuencia Q.23.- Este tipo emplea los mismos hilos E y M para la señalización de línea con la misma codificación que en le anterior, pero la de registrador se realiza a través de uno de los canales de telefonía y emplea la codificación especificada por el CCITT en su recomendación Q.23.

 Señalización E y M / multifrecuencia MF.- Este tipo emplea los mismos hilos E y M para la señalización de la línea con la misma codificación que en los casos anteriores, pero la de registrador se realiza a través de uno de los canales de telefonía y empleando la codificación especificada por el CCITT en sus recomendaciones para el sistema R2, u otro tipo de codificaciones mediante estándares más o menos abiertos.

 Señalización por canal común (CCS / common channel signaling).- Este tipo de señalización es la que realiza el intercambio de información de varios canales por un canal dedicado. Este canal constituye de hecho un canal de transmisión de datos, cuyo protocolo se establece en cada sistema de señalización.

En principio, estos sistemas están orientados a la señalización de los 30 canales de una trama MIC de 2 Mbps, por un canal de 64 kbps transmitido en el intervalo de 16 de la trama (el intervalo O se reserva pare la sincronización, quedando 30 canales de los 32 que forman la trama libres para transportar información). Existen sistemas o Variantes en que el canal de señalización común se transmite a velocidades de 2400, 2800 o 9600 bps, siendo por lo tanto utilizables en medios de transmisión analógicos mediante el empleo de módem.

La señalización CCS tiene las siguientes ventajas sobre la señalización CAS.

(13)

notables en entornos digitales con señalización a 64 Kbps

 Considerable extensión de vocabulario de señalización permitiendo una gran flexibilidad en la integración de servicios, aplicación e introducción de nuevos servicios suplementarios.

Importante aumento de la flabilidad y seguridad de la señalización, derivado de la utilización de las técnicas de detección y corrección de errores desarrollados y perfeccionadas en el campo de la transmisión de datos.

I.2 ESTÁNDARESDE RED (IEEE)

El Comité 802, o proyecto 802, del Instituto de Ingenieros en Eléctrica y Electrónica (IEEE) definió los estándares de redes de área local (LAN). La mayoría de los estándares fueron establecidos por el Comité en los 80´s cuando apenas comenzaban a surgir las redes entre computadoras personales.

Muchos de los siguientes estándares son también Estándares ISO 8802. Por ejemplo, el estándar 802.3 del IEEE es el estándar ISO 8802.3.

802.1 Definición Internacional de Redes. Define la relación entre los estándares 802 del IEEE y el Modelo de Referencia para Interconexión de Sistemas Abiertos (OSI) de la ISO (Organización Internacional de Estándares). Por ejemplo, este Comité definió direcciones para estaciones LAN de 48 bits para todos los estándares 802, de modo que cada adaptador puede tener una dirección única. Los vendedores de tarjetas de interface de red están registrados y los tres primeros bytes de la dirección son asignados por el IEEE. Cada vendedor es entonces responsable de crear una dirección única para cada uno de sus productos.

802.2 Control de Enlaces Lógicos. Define el protocolo de control de enlaces lógicos (LLC) del IEEE, el cual asegura que los datos sean transmitidos de forma confiable por medio del enlace de comunicación. La capa de Datos-Enlace en el protocolo OSI esta subdividida en las subcapas de Control de Acceso a Medios (MAC) y de Control de Enlaces Lógicos (LLC). En Puentes, estas dos capas sirven como un mecanismo de switcheo modular, como se muestra en la figura I-5. El protocolo LLC es derivado del protocolo de Alto nivel para Control de Datos-Enlaces (HDLC) y es similar en su operación. Nótese que el LLC provee las direcciones de Puntos de Acceso a Servicios (SAP’s), mientras que la subcapa MAC provee la dirección física de red de un dispositivo. Las SAP’s son específicamente las direcciones de una o más procesos de aplicaciones ejecutándose en una computadora o dispositivo de red.

El LLC provee los siguientes servicios:

 Servicio orientado a la conexión, en el que una sesión es empezada con un Destino, y terminada cuando la transferencia de datos se completa. Cada nodo participa activamente en la transmisión, pero sesiones similares requieren un tiempo de configuración y monitoreo en ambas estaciones.

(14)

 Servicio de conexión sin reconocimiento. En el cual no se define una sesión. Los paquetes son puramente enviados a su destino. Los protocolos de alto nivel son responsables de solicitar el reenvío de paquetes que se hayan perdido. Este es el servicio normal en redes de área local (LAN’s), por su alta confiabilidad.

802.3 Redes CSMA/CD. El estándar 802.3 del IEEE (ISO 8802-3), que define cómo opera el método de Acceso Múltiple con Detección de Colisiones (CSMA/CD) sobre varios medios. El estándar define la conexión de redes sobre cable coaxial, cable de par trenzado, y medios de fibra óptica. La tasa de transmisión original es de 10 Mbits/seg, pero nuevas implementaciones transmiten arriba de los 100 Mbits/seg calidad de datos en cables de par trenzado.

802.4 Redes Token Bus. El estándar token bus define esquemas de red de anchos de banda grandes, usados en la industria de manufactura. Se deriva del Protocolo de Automatización de Manufactura (MAP). La red implementa el método token-passing para una transmisión bus. Un token es pasado de una estación a la siguiente en la red y la estación puede transmitir manteniendo el token. Los tokens son pasados en orden lógico basado en la dirección del nodo, pero este orden puede no relacionar la posición física del nodo como se hace en una red token ring. El estándar no es ampliamente implementado en ambientes LAN.

802.5 Redes Token Ring. También llamado ANSI 802.1-1985, define los protocolos de acceso, cableado e interface para la LAN token ring. IBM hizo popular este estándar. Usa un método de acceso de paso de tokens y es físicamente conectada en topología estrella, pero lógicamente forma un anillo. Los nodos son conectados a una unidad de acceso central (concentrador) que repite las señales de una estación a la siguiente. Las unidades de acceso son conectadas para expandir la red, que amplía el anillo lógico. La Interface de Datos en Fibra Distribuida (FDDI) fue basada en el protocolo token ring 802.5, pero fue desarrollado por el Comité de Acreditación de Estándares (ASC) X3T9.

Es compatible con la capa 802.2 de Control de Enlaces Lógicos y por consiguiente otros estándares de red 802.

802.6 Redes de Área Metropolitana (MAN). Define un protocolo de alta velocidad donde las estaciones enlazadas comparten un bus dual de fibra óptica usando un método de acceso llamado Bus Dual de Cola Distribuida (DQDB). El bus dual provee tolerancia de fallos para mantener las conexiones si el bus se rompe. El estándar MAN esta diseñado para proveer servicios de datos, voz y vídeo en un área metropolitana de aproximadamente 50 kilómetros a tasas de 1.5, 45, y 155 Mbits/seg. DQDB es el protocolo de acceso subyacente para el SMDS (Servicio de Datos de Multimegabits Switcheados), en el que muchos de los portadores públicos son ofrecidos como una manera de construir redes privadas en áreas metropolitana. El DQDB es una red repetidora que switchea celdas de longitud fija de 53 bytes; por consiguiente, es compatible con el Ancho de Banda ISDN y el Modo de Transferencia Asíncrona (ATM). Las celdas son switcheables en la capa de Control de Enlaces Lógicos.

(15)

reservados para garantizar que los datos llegan a tiempo y en orden.

802.7 Grupo Asesor Técnico de Anchos de Banda. Este comité provee consejos técnicos a otros subcomités en técnicas sobre anchos de banda de redes.

802.8 Grupo Asesor Técnico de Fibra Óptica. Provee consejo a otros subcomités en redes por fibra óptica como una alternativa a las redes basadas en cable de cobre. Los estándares propuestos están todavía bajo desarrollo.

802.9 Redes Integradas de Datos y Voz. El grupo de trabajo del IEEE 802.9 trabaja en la integración de tráfico de voz, datos y vídeo para las LAN 802 y Redes Digitales de Servicios Integrados (ISDN’s). Los nodos definidos en la especificación incluyen teléfonos, computadoras y codificadores/decodificadores de vídeo (codecs). La especificación ha sido llamada Datos y Voz Integrados (IVD). El servicio provee un flujo multiplexado que puede llevar canales de información de datos y voz conectando dos estaciones sobre un cable de cobre en par trenzado. Varios tipos de diferentes de canales son definidos, incluyendo full duplex de 64 Kbits/seg sin switcheo, circuito switcheado, o canales de paquete switcheado.

802.10 Grupo Asesor Técnico de Seguridad en Redes. Este grupo esta trabajando en la definición de un modelo de seguridad estándar que opera sobre una variedad de redes e incorpora métodos de autenticación y encriptamiento. Los estándares propuestos están todavía bajo desarrollo en este momento.

802.11 Redes Inalámbricas. Este comité esta definiendo estándares para redes inalámbricas. Esta trabajando en la estandarización de medios como el radio de espectro de expansión, radio de banda angosta, infrarrojo, y transmisión sobre líneas de energía. Dos enfoques para redes inalámbricas se han planeado. En el enfoque distribuido, cada estación de trabajo controla su acceso a la red. En el enfoque de punto de coordinación, un hub central enlazado a una red alámbrica controla la transmisión de estaciones de trabajo inalámbricas.

802.12 Prioridad de Demanda (100VG-ANYLAN). Este comité está definiendo el estándar Ethernet de 100 Mbits/seg. Con el método de acceso por Prioridad de Demanda propuesto por Hewlett Packard y otros vendedores. El cable especificado es un par trenzado de 4 alambres de cobre y el método de acceso por Prioridad de Demanda usa un hub central para controlar el acceso al cable. Hay prioridades disponibles para soportar envío en tiempo real de información multimedia.

I.3 MODELO TCP/IP

(16)

corporaciones y por casi todas las universidades y organizaciones federales de los Estados Unidos.

Telnet.

Es un protocolo de comunicaciones que permite al usuario de una computadora con conexión a Internet establecer una sesión como terminal remoto de otro sistema de la Red. Si el usuario no dispone de una cuenta en el ordenador o computadora remoto, puede conectarse como usuario anonymous y acceder a los ficheros de libre distribución. Muchas máquinas ofrecen servicios de búsqueda en bases de datos usando este protocolo. En la actualidad se puede acceder a través de World Wide Web (WWW) a numerosos recursos que antes sólo estaban disponibles usando TELNET.

Ftp (File Transfer Protocol).

Es un protocolo de transferencia de archivos que se utiliza en Internet y otras redes para transmitir archivos. El protocolo asegura que el archivo se transmite sin errores. El sistema que almacena archivos que se pueden solicitar por FTP se denomina servidor de FTP. FTP forma parte del conjunto de protocolos TCP/IP, que permite la comunicación en Internet entre distintos tipos de máquinas y redes.

Smtp (Simple Message Transfer Protocol).

Se usa para transmitir correo electrónico. Es transparente por completo para el usuario, pues estos así nunca se dan cuenta del trabajo del smtp debido a que es un protocolo libre de problemas.

Kerberos.

Es un protocolo de seguridad soportado en forma muy amplia. Este utiliza una aplicación especial llamada servidor de autenticidad para validar las contraseñas y esquemas de encriptado. Este protocolo es uno de los mas seguros.

Dns (Domain Name Servise).

Permite a una computadora con un nombre común convertirse en una dirección especial.

Snmp (Simple Network Manager Protocol).

Proporciona mensajes de cola y reporta problemas a través de una red hacia el administrador, usa el udp como mecanismo de transporte.

Rpc (Remote Procedure Call).

Es un conjunto de funciones que permiten a una aplicación comunicarse con otra maquina(servidor). Atiende funciones de programas, códigos de retorno.

Nfs (Network File System).

Conjunto de protocolos desarrollados por Sun MicroSystems para permitir a múltiples maquinas tener acceso a las direcciones de cada una de las tras de manera transparente.

(17)

Es un protocolo de transferencia de archivos muy sencillo que carece de seguridad. Ejecuta las mismas tareas que ftp pero usando un udp como protocolo de transporte.

Tcp.

Es un protocolo de comunicación que proporciona transferencia confiable de datos. Es responsable de ensamblar los datos pasados de aplicaciones de capas superiores hacia paquetes estandar y asegurar que los datos se transfiera en forma segura.

I.4 Dispositivos de Red

Hubs y Concentradores.

Son un punto central de conexión para nodos de red que están dispuestos de acuerdo a una topología de estrella. Los Concentradores son dispositivos que se encuentran físicamente separados de cualquier nodo de la red, aunque algunos Concentradores de hecho se enchufan a un puerto de expansión en un nodo de la red. El concentrador tiene varios puertos en la parte trasera de la tarjeta, a los que se conecta el cable de otros nodos de red.

Pueden conectarse varios Concentradores para permitir la conexión de nodos adicionales. En la figura aparecen conectados dos conectores de cuatro puertos. Ahí, ambos conectores usan cable UTP (10BASE-T) y clavijas RJ-45 para la conexión. Se utiliza un puerto en cada concentrador para conectarse con el otro concentrador. El cable empleado para conectar a los Concentradores es el mismo que se usa entre el concentrador y los nodos de la red, a excepción de que los alambres están traslapados entre los dos conectores a cada extremo.

Muchos Concentradores tienen un conector BNC en la parte trasera, además de los sockets normales RJ-45. El conector BNC permite que se enlacen Concentradores por medio de un cable coaxial Thin Ethernet. Al disponer del conector BNC, no se tiene que desperdiciar un puerto RJ-45 en cada concentrador. Por lo contrario, ese puerto puede conectarse a un nodo de red adicional. Además de los Concentradores conectados con el cable Thin Ethernet en el mismo segmento de cable Thin Ethernet.

Cable UTP con traslape

A nodos

de red

(18)

Repetidores.

Un repetidor es un dispositivo que permite extender la longitud de la red, ampliarla y retransmite la señal de red. En la figura la longitud máxima de segmento de cable para Thin Ethernet es de 607 pies. Si se coloca un repetidor al extremo del cable, se puede conectar otro segmento de cable Thin Ethernet de hasta 607 pies para dar un total de 1214 pies.

Los repetidores múltiples permiten conectar más de dos segmentos de cable de red. En la figura, con un repetidor multipuerto se pueden conectar varios segmentos de Thinnet, para formar una combinación de tipologías físicas de bus y estrella. Es importante no olvidar que, aunque el repetidor multipuertos permite crear una topología física de estrella basada en varias topologías físicas de bus, el propósito principal de un repetidor es extender la longitud máxima permitida del cable de red.

A nodos de

red A nodos de red

Concentradores Cable

Thinnet Conector T BNC

1214’ max

607’ max 607’ max

Repetidor Terminador Terminador

Nodos de red conectados a segmentos usando

conectores T BNC

Segmento de cable Thin Ethernet Segmento de cable

(19)

Puentes.

Un puente es un dispositivo que conecta dos LAN separadas para crear lo que aparenta ser una sola LAN. Los puertos revisan la dirección asociada con cada paquete de información. Luego, si la dirección es la correspondiente al otro segmento de red, el puente pasara el paquete al segmento. Si el puente reconoce que la dirección es la correspondiente a un nodo del segmento de red actual, no pasara el paquete al otro lado. Considere el caso de dos redes separadas, una que opera en Thin Ethernet y la otra basada en un esquema de cableado propio con adaptadores de red propios. La función del puente es transmitir la información enviada por un nodo de una red al destino pretendido en otra red.

Los puentes también suelen emplearse para reducir la cantidad de trafico de red de un segmento de red. Mediante la división de un solo segmento de red en dos segmentos y conectándolos por medio de un puente, se reduce el traficó general en la red. Para ayudar a ilustrar este concepto utilizaremos la siguiente figura donde antes de incorporar un puente a la red, todo el traficó de la red esta en un segmento. AB representa la información enviada del nodo A al B, BC la del nodo B al C y CD la del nodo C al D. Mediante la incorporación de un puente y la división del segmento del cable de red en dos segmentos, solo dos actividades suceden en cada segmento en vez de tres. El puente mantendrá aislada la actividad de la red en cada segmento, a menos que el nodo de un segmento envíe información al nodo de otro segmento (en cuyo caso el puente pasaría la información).

Segmentos de cable Thin Ethernet

Repetidor multipuertos

Puente Thin Ethernet

(20)

Un puente también sirve para conectar dos segmentos de red Thin Ethernet por medio de comunicaciones inalámbricas, en la figura esta conectado un puente a cada segmento de red. El puente incluye un transmisor y un receptor para enviar la información adecuada entre segmentos.

Los puentes vienen en todas formas y tamaños. En muchos casos, un puente es un dispositivo similar a una computadora con conectores a los que se conectan redes separadas. En otros casos, un puente es, de hecho, una computadora con un adaptador para cada red que va a conectarse. Un software especial permite el paso de la información adecuadamente a través de los adaptadores de la red de un segmento de red al segmento de red de destino.

Ruteadores.

Los ruteadores son similares a los puentes, solo que operan a un nivel diferente. Los ruteadores requieren por lo general que cada red tenga el mismo NOS. Con un NOS común, el ruteador permite ejecutar funciones mas avanzadas de las podría permitir un puente, como conectar redes basadas en topologias lógicas completamente diferentes como Ethernet y Token ring. Los

A B

C D

P uente AB

BC

BC CD

Después del puente

Segmento de red

A B C D

AB BC CD

Antes del puente

(21)

ruteadores también suelen se lo suficientemente inteligentes para determinar la ruta mas eficiente para el envío de datos, en caso de haber mas de una ruta. Sin embargo, junto con la complejidad y la capacidad adicionales proporcionadas por los ruteadores se da una penalidad de aumento y un rendimiento disminuido.

Compuertas.

Una compuerta permite que los nodos de una red se comuniquen con tipos diferentes de red o con otros dispositivos. Podría tenerse, una LAN que consista en computadoras Macintosh y otra con IBM. En este caso, una compuerta permitiría que las computadoras IBM compartieran archivos con las Macintosh. Este tipo de compuertas también permite que se compartan impresoras entre las dos redes.

Puente inalámbrico Thin Ethernet

Thin Ethernet

(22)

Capitulo II

REDES DE COMPUTO.

II.1 ANTECEDENTES HISTÓRICOS.

Introducción.

El vertiginoso avance tecnológico que han experimentado los campos de la electrónica y la computación en los últimos cincuenta años, permitieron incrementar la capacidad y velocidad de los sistemas de comunicación de datos. Por esta razón se considera importante conocer el desarrollo de las computadoras en sus diversas etapas, así como los distintos mecanismos para su interconexión.

Actualmente existen varios tipos de redes de cómputo establecidas por las diferentes plataformas tecnológicas desarrolladas por los fabricantes.

Breve Historia de las Computadoras.

En 1834, el inglés Charles Babbage anticipó el nacimiento de lo que hoy se conoce como computadora, inventando una "máquina diferencial" capaz de computar tablas matemáticas mediante un complejo sistema de engranes. En 1843, Lady Ada Augusta Lovelance (auspiciadora económica del invento de Babbage), le sugirió que utilizara las tarjetas perforadas empleadas en los telares electromecánicos para proporcionarle distinta información a su máquina, esto le evitaría tener que cambiar los engranes y mecanismos al hacer un cómputo distinto.

Por otra parte, mientras trabajaba en el perfeccionamiento de su invento, Babbage concibió la idea de una "máquina analítica", capaz de tener una comunicación "inteligente", la llamó "la locura de Babbage". Después sirvió como modelo de inspiración para los futuros inventores de lo que hoy se conoce como computadora.

Computadoras electrónicas.

La idea de utilizar dispositivos de conmutación, primero eléctricos y después electrónicos, fue motivada por la necesidad de crear un lenguaje sencillo con el que una máquina podría comunicarse con las personas (a través de la representación de señales eléctricas en unos y ceros en un código binario), también porque los dispositivos electrónicos son más veloces que cualquier dispositivo mecánico jamás construido.

Primera generación de computadoras (1946-1959).

Durante la segunda guerra mundial, los militares norteamericanos al requerir mayor velocidad y precisión en los cálculos para dirigir con exactitud la trayectoria de los disparos de sus cañones, patrocinaron un proyecto desarrollado en la universidad de Pennsylvania para crear una máquina electrónica capaz de efectuar dicha tarea, esta máquina que fue conocida como ENIAC (Electronic Numerical Integrator and Computer): pesaba aproximadamente treinta toneladas y ocupaba una habitación completa. Su funcionamiento se basaba en la conmutación casi simultánea de cientos de "válvulas electrónicas" que tenían la desventaja de disipar gran cantidad de calor y su vida útil era muy limitada; los tiempos de operación de esta computadora eran del orden de algunos milisegundos.

(23)

Con la invención del transistor como primer dispositivo electrónico de estado sólido, a mediados de la década de los 50, el tamaño de las computadoras, así como los tiempos de procesamiento se redujeron notablemente a aproximadamente 100 microsegundos. Sin embargo, la interconexión entre los distintos componentes los hacía todavía demasiado voluminosos. Durante esta etapa surgen importantes compañías como IBM, que incorpora lectores de tarjetas y cintas magnéticas a sus computadoras, pero únicamente fabricadas para fines industriales.

Tercera generación de computadoras (1969-1971).

En esta época, el desarrollo de la computación y la electrónica es favorecido por el programa espacial norteamericano, con el desarrollo de los primeros circuitos integrados y la primera minicomputadora. Asimismo, aparecen los lenguajes de alto nivel tales como el COBOL y el FORTRAN, que simplifican notablemente la tarea de los programadores y surge el concepto de múltiple programación.

Cuarta generación de computadoras (1971-actualidad).

Esta etapa se caracteriza por la aparición del primer microprocesador el 8080 de INTEL™, que permite a la gente común por primera vez experimentar, e incluso hacer su propia computadora. Otros aspectos notables son la aparición del disco flexible y las interfaces de entrada/salida.

Década de los 80.

Se comercializan las computadoras personales (PCs) y se genera una gran cantidad de software de aplicación específico y sistemas operativos que permiten conectarlas en red. Se desarrollan sistemas multiusuarios y emergen las redes de área local o LANs (Local Área Networks), que posteriormente serían utilizadas en todo el mundo.

Década de los 90.

Las redes de cómputo se convierten en una necesidad para pequeñas y medianas empresas en el desarrollo de una cultura de sistemas de información. Aparecen computadoras con mayor velocidad y capacidad de procesamiento. Las computadoras portátiles (laptops, handtops) empiezan a comercializarse rápidamente y evoluciona el concepto de Telecommuting (trabajo en casa), edificios inteligentes y oficina virtual para tener la capacidad de comunicarse a su red de cómputo desde cualquier parte, y accesar a servicios multimedia, así como a los servicios de Internet entre otros.

Evolución de las Redes de Cómputo.

(24)

Figura 2.1 Empleo de terminales tontas para el envío de información a una computadora central ó host.

Posteriormente, apareció en concepto de tiempo compartido, que consistía en la conexión de terminales tontas a un host el cual distribuía la atención a los usuarios conectados a él en diferentes tiempos. Este host se encontraba enlazado a una macrocomputadora (mainframe) que realizaba el procesamiento, ver figura 2.2.

Figura 2.2 Procesamiento de información bajo el concepto de tiempo compartido.

Con la introducción del procesamiento en tiempo real, el usuario podría ver el resultado del procesamiento de la información en cuanto la tecleaba. El incremento en el uso del tiempo compartido por más usuarios creó la necesidad de manejo de estándares para lograr agilizar la comunicación con la computadora anfitriona, ya que cada host manejaba distintos estándares.

En 1964 se crea el estándar para el intercambio de información ASCII (American Standard Code for Information Interchange), el cual consta de 128 caracteres formados con siete bits cada uno.

El nacimiento de las microcomputadoras o computadoras personales marcó la pauta de lo que sería la revolución de la computación. La computadora personal le permitió al usuario tener en su escritorio la capacidad de procesamiento de información y el acceso a bases de datos sin tener que depender de ninguna otra máquina.

Una vez desarrollados programas como hojas de cálculo y procesadores de texto, surge la necesidad de conectarse a otros sistemas de cómputo para lo que se diseñó un software de comunicación con la computadora central, haciendo que la recepción y envío de información host- PC fuera más rápida y económica que host-terminal tonta.

Con las mejoras en el procesamiento y almacenamiento de información se redujeron cada vez más las diferencias entre las macrocomputadoras, las PCs y las mínicomputadoras.

La necesidad de interconexión entre PCs y el hecho de poder compartir recursos e información dio como resultado la aparición de las primeras redes de área local LANs.

Conforme se extendió la implementación de las LAN, la necesidad de comunicarlas se convirtió en un aspecto de gran importancia para las empresas apareciendo las redes de área amplia WANs (Wide Área Network), tal como se muestra en la figura 2.3.

(25)

Figura 2.3 Red de Área Amplia

II.2 SISTEMAS DE CÓMPUTO

Introducción.

Un sistema de cómputo es un equipo electrónico que procesa e intercambia información (codificada en forma binaria), a través de dispositivos periféricos de entrada y salida que le permiten al usuario estar en "comunicación". En él pueden identificarse dos unidades funcionales: software y hardware. El software lo forman todas las instrucciones necesarias para que el sistema de cómputo realice el procesamiento de información; la secuencia de estas instrucciones se identifica como programa y los datos procesados por los programas son las bases de datos. El hardware está constituido por los componentes electrónicos y electromecánicos que comprenden la parte física del sistema de cómputo.

Hardware de un Sistema de Cómputo.

El hardware se divide en tres partes fundamentales: la unidad de procesamiento central (CPU), la unidad de memoria y el procesador de entrada/salida.

La unidad central de procesamiento.

La CPU (Central Processing Unit) contiene varios registros de almacenamiento del información, así como una unidad aritmética lógica y circuitos de control.

Unidad de Memoria.

La unidad de memoria está compuesta por un grupo de circuitos que almacenan información binaria. En un sistema de cómputo se emplean dos tipos de memoria: Las memorias de acceso aleatorio RAM (Random Access Memory) y las memorias de lectura únicamente ROM (Read Oniy Memory).

La memoria RAM tiene la capacidad de escritura y lectura de forma aleatoria. Sin embargo, es de tipo volátil ya que la información almacenada en ella se perderá en el momento que se desconecte su alimentación. El propósito fundamental de las memorias en un sistema de cómputo, es almacenar temporalmente cualquier dato o instrucción del microprocesador, por lo que a mayor capacidad de memoria de un sistema de cómputo, mayor será la velocidad a la que puede "correr" o procesar información.

(26)

Se le llama memoria principal a aquélla que se comunica directamente con la CPU, y memoria auxiliar a la que sirve de respaldo. Los dispositivos de memoria auxiliar más comunes son los discos y las cintas magnéticas, los cuales almacenan la información que no se requiere de momento en el procesador.

Procesador de entrada/salida.

Existe un procesador de entrada/salida (IOP), encargado de controlar el flujo de información que provenga o se dirija hacia el interior del sistema de cómputo. Algunos ejemplos de estos son los monitores, discos magnéticos, teclados e impresores como se indica en la figura 2.4.

Figura 2.4 Operación del procesador de entrada/salida.

II.3 DEFINICIÓN Y TECNOLOGÍAS.

¿Qué es una Red de Cómputo?.

Uyless Black, en su libro Redes de Computadoras la define como: un grupo de computadoras (y terminales, en general) interconectados a través de uno o varios caminos o medios de transmisión. Si se analiza el concepto anterior, se concluye que los elementos básicos de una red de cómputo son los ordenadores (sistemas de cómputo), los medios de transmisión y los dispositivos que permitan interconectarlos.

Clasificación de las Tecnologías de Red

El objetivo principal de las redes de cómputo es permitir la comunicación de datos entre los sistemas computacionales de una organización. Considerando las distancias existentes entre estos sistemas, las tecnologías para redes se clasifican de acuerdo al área de cobertura para la que fueron diseñadas como se indica a continuación:

Redes de área local (local área Network)

Una LAN provee una comunicación de alta velocidad (4-10 Mbps) y corta distancia (de algunos metros a pocos kilómetros) entre dispositivos inteligentes como PCs, que permiten a los usuarios intercambiar archivos o mensajes y compartir el uso de dispositivos como impresores, plotters, servidores de archivos o de comunicaciones.

Redes de área metropolitana (metropolitan área Network)

Las MANs se encuentran entre las LAN y WANs, con una cobertura que comprende desde unos kilómetros hasta cientos de kilómetros, y una velocidad de transmisión de unos cuantos Kbps a Gbps, sirve como el backbond que interconecta a varias LANs distribuidas o puede proveer acceso a la red metropolitana o a una red pública de cobertura amplia.

Redes de área amplia (Wide área Network)

(27)

los sistemas de cómputo comunicarse a través de grandes distancias. Las redes que comunican a un amplio grupo de usuarios separados geográficamente son identificadas como redes de área amplia (WAN).

Las WANs han evolucionado; actualmente los dispositivos conectados a estas redes pueden ser terminales inteligentes, PCs, estaciones de trabajo, minicomputadoras e incluso LANs. Las principales tecnologías desarrolladas para este tipo de redes X.25, Frame Relay, ATM.

Figura 2.5 Configuración de una Red de Área Amplia.

Tecnologías de Procesamiento de la Red

Otro aspecto importante de una red de cómputo es el tipo de procesamiento que se efectúa en los sistemas que la integran. El tipo de procesamiento requerido por una organización en particular influye en la selección de la tecnología de red a utilizar, por lo que se clasificaran las redes de acuerdo al tipo de procesamiento soportado.

Procesamiento centralizado

Es el utilizado en los mainframes y minicomputadoras. Los usuarios se conectan a las máquinas mediante terminales tontas incapaces de procesar información. Las aplicaciones residen en el sistema de cómputo central, el cual se hace cargo de los requerimientos generados por las terminales y el proceso del programa.

Algunos de los problemas de este tipo de redes es la degradación del servicio al aumentar el número de terminales conectados al sistema.

Procesamiento distribuido

Se utiliza en las LANs donde los sistema de cómputo son PCs capaces de efectuar un procesamiento local. Básicamente, el procesamiento distribuido consiste en ejecutar partes de una aplicación en varios sistemas de cómputo de la red. Existen diversas maneras de manejarlo en las aplicaciones; la tendencia actual es la arquitectura cliente-servidor.

Red Enterprise

El diseño, instalación y operación de redes de computadoras es vital para el funcionamiento de las organizaciones modernas. Durante la década pasada, las organizaciones instalaron complejas y diversas redes, conectando mainframes, minicomputadoras, computadoras personales, estaciones de trabajo, terminales y otros dispositivos.

A continuación se analizan las características y elementos de los distintos tipos de redes de cómputo que utilizan las organizaciones y cómo pueden interconectarse para integrar una red Enterprise.

Definición

(28)

telecomunicaciones, definiéndose como: la red de computadoras que resulta de interconectar las distintas redes existentes a lo largo de una organización diseñada para cubrir todas sus necesidades.

Objetivo

La meta de la conectividad de redes Enterprise es facilitar la computación empresarial, en la que los usuarios, a través de una organización, sean capaces de comunicarse entre sí y accesar datos, servicios de procesamiento, aplicaciones y otros recursos, sin importar donde están localizados. El reto es proveer a la organización con facilidades de conectividad que cubran las necesidades de la computación empresarial a un costo razonable. La compatibilidad es un factor clave en la provisión de conectividad entre todos los usuarios y recursos en la red empresarial.

Bloques de construcción de una red Enterprise

La tarea de construir una red Enterprise consiste en interconectar diferentes redes individuales existentes de tal manera que constituyan un todo coherente. Estas redes generalmente usan tecnología de conectividad LAN, tecnología WAN o ambas.

En la mayoría de los casos se identifican las redes existentes de una organización dentro de dos categorías: redes departamentales y redes tradicionales. Las primeras usan tecnología LAN para interconectar sistemas, y las redes tradicionales usan tecnología WAN para conectar mainframes o minicomputadoras a grupos de terminales. La mayoría de las redes empresariales deben incorporar la amplia variedad de LANs departamentales que han crecido en paralelo con las redes tradicionales WANs dentro de una organización.

II.4 ELEMENTOSFUNDAMENTALES

Elementos de una Red de Cómputo

En esta sección se identifican cuáles son los elementos fundamentales que integran una red de cómputo de tipo LAN, así como sus características principales. Los elementos son: el servidor, las estaciones de trabajo, las tarjetas de interfase de red, el cableado y el sistema operativo de red.

Servidor

Es el sistema de cómputo central que ejecuta un software especializado para proveer acceso compartido a los usuarios de la red; es el sistema operativo de la red.

Debe contar con capacidad de procesamiento suficiente para responder a los requerimientos de las estaciones y con un disco duro de gran capacidad para almacenar al sistema operativo de la red, las aplicaciones y los archivos de los usuarios.

Estaciones de trabajo

Son los sistemas de cómputo de usuario que comparten los recursos del servidor, realizan un proceso distribuido y se interconectan a la red mediante una tarjeta de interfase de red.

Referencias

Documento similar

El nuevo Decreto reforzaba el poder militar al asumir el Comandante General del Reino Tserclaes de Tilly todos los poderes –militar, político, económico y gubernativo–; ampliaba

que hasta que llegue el tiempo en que su regia planta ; | pise el hispano suelo... que hasta que el

Después de una descripción muy rápida de la optimización así como los problemas en los sistemas de fabricación, se presenta la integración de dos herramientas existentes

Habiendo organizado un movimiento revolucionario en Valencia a principios de 1929 y persistido en las reuniones conspirativo-constitucionalistas desde entonces —cierto que a aquellas

 Para recibir todos los números de referencia en un solo correo electrónico, es necesario que las solicitudes estén cumplimentadas y sean todos los datos válidos, incluido el

puedan adscribirse a un género común, sino que el concepto de sistema político-jurí- dico resulta ser un híbrido de realidades heterogéneas; en segundo lugar, que este ca-

Ciaurriz quien, durante su primer arlo de estancia en Loyola 40 , catalogó sus fondos siguiendo la división previa a la que nos hemos referido; y si esta labor fue de

Las manifestaciones musicales y su organización institucional a lo largo de los siglos XVI al XVIII son aspectos poco conocidos de la cultura alicantina. Analizar el alcance y