• No se han encontrado resultados

Modelo de evolución de internet en México

N/A
N/A
Protected

Academic year: 2020

Share "Modelo de evolución de internet en México"

Copied!
149
0
0

Texto completo

(1)INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY CAMPUS MONTERREY. PROGRAMA DE GRADUADOS EN TECNOLOGÍAS DE INFORMACIÓN Y ELECTRÓNICA. MODELO DE EVOLUCIÓN DE INTERNET EN MÉXICO. TESIS PRESENTADA COMO REQUISITO PARCIAL PARA OBTENER EL GRADO ACADÉMICO DE: MAESTRO EN CIENCIAS EN INGENIERÍA ELECTRÓNICA CON ESPECIALIDAD EN TELECOMUNICACIONES. POR: ARMANDO CARLOS PEÑA HINOJOSA. MONTERREY, N.L.. MAYO DE 2007.

(2) INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE MONTERREY DIVISIÓN DE TECNOLOGÍAS DE INFORMACIÓN Y ELECTRÓNICA PROGRAMA DE GRA DUADOS EN TECNOLOGÍAS DE INFORMACIÓN Y ELECTRÓNICA. Los miembros del comité de tesis recomendamos que la presente tesis del Ing. Armando Carlos Peña Hinojosa sea aceptada como requisito parcial para obtener el grado académico de Maestro en Ciencias en Ingeniaría Electrónica con Especialidad en Telecomunicaciones.. Comité de tesis:. ______________________________ Dr. Cesar Vargas Rosales Asesor. ______________________________ Dr. José Ramón Rodríguez Cruz Sinodal. ______________________________ Dr. Gabriel Campuzano Treviño Sinodal. _________________________________________ Dr. Graciano Dieck Assad Director del Programa de Graduados en Tecnologías de Información y Electrónica. Mayo 2007. ii.

(3) Modelo de Evolución de Internet en México. POR:. Armando Carlos Peña Hinojosa. TESIS. Presentada al Programa de Graduados en Tecnologías de Información y Electrónica Este trabajo es requisito parcial para obtener el grado de Maestro En Ciencias en Ingeniaría Electrónica con Especialidad en Telecomunicaciones. INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY. Mayo 2007. iii.

(4) DEDICATORIA. Con todo mi amor dedico este trabajo a mi esposa Lorena, sin su gran apoyo incondicional, su esfuerzo y su colaboración este proyecto no hubiera podido llegar a término. Le doy las gracias por sus innumerables y brillantes ideas proporcionadas durante la elaboración de la presente investigación. Te amo Lorena, gracias por estar siempre a mi lado y por amarme incondicionalmente.. Dedico este proyecto a mis dos príncipes maravillosos, Sebastián y David, que sin saberlo han sacrificados muchos fines de semana de juego para que su papá pudiera terminar su tesis. Todos ustedes son la razón de mi existir y de mis triunfos. Los amo con todo mi corazón Sebastián y David.. Dedico este trabajo a aquellos que me han amado desde antes de mi existir, aquellos que han dado su vida, esfuerzo y su todo cada día para darme lo mejor. Gracias por estar a mi lado en cada momento de mi vida, sus consejos y sobre todo su ejemplo me han dado la dirección para continuar. Los quiero Papá y Mamá.. iv.

(5) RECONOCIMIENTOS No me cansaré de agradecer a mi Dios por las bendiciones que día a día trae a mi vida.. Agradezco a mi esposa Lorena Salinas y mis hijos Sebastián y David por todo su amor y su apoyo en todo momento.. Agradezco a mis padres Armando Peña Silva e Irma Dolores Hinojosa Terán por todo su amor y apoyo incondicional a lo largo de mi vida.. También quiero agradecer a mi asesor el Doctor César Vargas Rosales, sin su gran apoyo y conocimientos no hubiera logrado alcanzar esta meta. A mis sinodales, los Doctores Gabriel Campuzano Treviño y José Ramón Rodríguez Cruz por su colaboración en la aprobación de esta investigación.. Y por último quiero mencionar una de las riquezas que logre obtener a lo largo de esta etapa en mi vida: la amistades que tuve durante mi larga estancia en el CET de ITESM Campus Monterrey: Javier Cruz Caraveo, Hilda Sámano, Jesús Mario Castrellón, Ivan Lozada, Hugo Santiago, Alberto Jorge Hernández, Marco Antonio Foncerrada Castro, Fabian Ocura, Elodia Sánchez y Oziel Hernández.. v.

(6) RESUMEN. El crecimiento y evolución de Internet ha sido algo imparable desde su creación. Las necesidades de contar con más ancho de banda, bajo retardo, escalabilidad y calidad de servicio han ido aumentando sin parar y no hay síntomas de que cese.. Cada año aparecen nuevos servicios que hacen uso de Internet y que permiten la apertura de nuevos campos de negocio y posibilidades para los usuarios finales. Esto requiere una demanda de recursos adicionales a los ya existentes y que Internet debe absorber creciendo en diversas direcciones.. Internet es una compleja red que se soporta sobre una topología de interconexión de redes y computadoras en forma de grafo, que no pertenece a ningún organismo ni existe un control centralizado. Su crecimiento no esta definido y depende de una serie de factores sociales, económicos y tecnológicos, que provocan que el crecimiento de la demanda influya directamente en la evolución de esta topología.. En esta tesis examinamos la relación que existen entre el desarrollo de Internet en México y varios factores económicos, sociales y tecnológicos. Los resultados de los análisis de correlación de Pearson muestran que la penetracion de de Internet está ampliamente relacionada con factores como el producto interno bruto per capita, la urbanización, la líneas telefónicas instaladas y el PIB informático.. vi.

(7) INDICE Dedicatoria.................................................................................................................. iv Reconocimientos…………………………………………………………………….. v Resumen...................................................................................................................... vi Índice........................................................................................................................... vii Lista de Figura…......................................................................................................... x Lista de Tablas............................................................................................................. xiii 1. Capitulo 1 Introducción......................................................................................... 1 1.1. Justificación….............................................................................................. 2. 1.2. Objetivo.......................................................................................................... 3 1.3. Sumario………………………………………………………....................... 3 2. Antecedentes…………………………………………………………………….. 4 2.1. Orígenes y Evolución de Internet Metodología……...................................... 5 2.2. Estructura de Internet ……………………………………………………… 9 2.2.1. Flujo de Información en Internet………………….…….…………... 10 2.3. Evolución de la Topología………………………………………………….. 11 2.3.1. Arquitectura de Internet………….………………………………..… 12 2.3.2. El Modelo OSI... ……………………………………………………. 13 2.3.3. TCP/IP……………………………………......................................... 14 2.3.3.1.. IP (Internet Protocol)……….…….…………………………. 15. 2.3.3.2.. Direccionamiento IP V4……….……………………………. 16. 2.3.3.3.. TCP (Transfer Control Protocol)……………………..……... 17. vii.

(8) 2.3.4. Enrutamiento IP................................................................................... 18 2.3.4.1.. Routers…………………………………….………………… 18. 2.3.5. Los Sistemas Autónomos y BGP……………………………………. 19 2.3.6. Enrutamiento de Sistemas Autónomos…………………….………... 22 2.3.7. BGP (Border Gateway Protocol)……….………………………….... 23 2.3.8. IPv6………………………………………………….………………. 26 2.3.8.1.. Características principales de IPv6………….………………. 27. 2.3.9. Multihoming………………………………………………………… 30 3. Aplicaciones que revolucionaron la red de Internet…………..…………............ 34. 3.1. Email…………………………………………………………………........... 35 3.2. WEB Browsers……………………………………………………………... 35 3.3. Music on Demand…………………………………………………………... 36 3.4. VoIP………………...………………………………………………………. 38 3.5. IPTV…………...…………………………………………………………… 39 3.6. Televisión Móvil………….………………………………………………... 41 3.7. WIMAX…………………………………………………………………….. 44 4. Evolución de Internet……………………………………………………………. 46 4.1. Factores de control y medición en la evolución de internet……………….. 47 4.2. Penetración de internet Mundial………………………................................ 51 4.3. Crecimiento de internet en Estados Unidos……………............................... 53 4.4. Factores de crecimiento de internet en México…………………………….. 56 4.5. Modelo de crecimiento de internet en Asia………………………................ 61. viii.

(9) 5. Modelo propuesto de evolución de internet en México......................................... 65 5.1. Modelo propuesto de evolución de internet en México……………………. 66 5.2. Metodología del modelo…………………………………………………..... 69 5.2.1. Metodología que se utilizará para la interpretación estadística del 69 modelo Interpretación estadística del Modelo……………..…………... 5.2.2. Homologación de parámetros de comparación……………………… 71 5.3. Análisis y resultados del modelo de penetración en México………………. 73 5.4. Comprobación del Modelo de penetración de Internet en México………… 95 6. Conclusiones………………………………………………………...…………... 98 6.1. Resumen de factores o hipótesis sostenidos por la investigación………….. 101 6.2. Resumen de factores o hipótesis no sostenidos por la investigación………. 102 7. Trabajos Futuros………………………………………………………………… 106 7.1. Acciones a tomar para dar seguimiento al modelo propuesto evolución de 107 internet en México………………………………………………………….. 8. Apéndices……………………………………………………………………….. 109 9. Notas………………………………………………………….…………………. 119 10. Glosario……………………………………………………...…………………... 121 11. Bibliografía………………………………………………...……………………. 130 12. Vita……………………………………………………………………………… 134. ix.

(10) LISTA DE FIGURAS Figura 2.1 Número de Servidores en Internet................................................................. 8 Figura 2.2 Arquitectura de interconexión de redes…….………………………............ 12 Figura 2.3 Estructura de capas del Modelo OSI...………………………………...…… 14 Figura 2.4 Correspondencia entre el Modelo OSI y el modelo TCP/IP….……………. 15 Figura 2.5 Representación de un AS……….………………………………………….. 19 Figura 2.6 Interconexión entre 2 AS …………………………………………….......... 20 Figura 2.7 Formato de Tablas de BGP………………………….……………………... 21 Figura 2.8 Esquema del proceso de análisis de una tabla de BGP…….………………. 21 Figura 2.9 Esquema de Multihoming 1……………………………………….............. 32 Figura 2.10 Esquema de Multihoming 2………….…………………………………… 32 Figura 3.1 Tráfico entre la Universidad de California en Santa Cruz e Internet….…… 36 Figura 3.2 Tráfico entre la Universidad de Wisconsin en Madison e Internet…….…... 37 Figura 3.3 Red de VoIP………………………….…………………………………….. 38 Figura 4.1 Estadísticas mundiales de población y uso de de Internet………….……… 51 Figura 4.2 Crecimiento de usuarios de Internet mundiales periodo 2000-2007…….… 52 Figura 4.3 Penetración de Uso de Internet en Estados Unidos de América…….……... 53 Figura 4.4 Total de Dominios registrados en México…………………………………. 56 Figura 4.5 Tipos de Dominios registrados en México no incluido .com.mx…..……… 57 Figura 4.6 Cantidad de Dominios COM.MX registrados en México……….………… 58 Figura 4.7 Servidores de Internet en México……….…………………………………. 58 Figura 4.8 Usuarios de Internet en México…….……………………………………… 60 Fig. 4.9 Factores de crecimiento de internet en Asia………………………………….. 62 Fig. 5.1. Formula de correlación de Pearson…………………………………………... Figura 5.2 Gráfica de la Correlación entre la Penetración de Internet y la Inversión en Infraestructura de Telecomunicaciones ……………………………………………….. 75 Figura 5.3-a Gráfica de número de usuarios de Internet por cada 1000 habitantes de Occidente y México……….…………………………………………………………… 75 x.

(11) Figura 5.3-b Gráfica de inversión de en telecomunicaciones en países de Occidente y México………….……………………………………………………………………… 76 Figura 5.4-a Gráfica de inversión de en telecomunicaciones en América Latina……... 76 Figura 5.4-b Gráfica de número de usuarios de Internet por cada 1000 habitantes en América Latina………………………………………………………………………... 76 Figura 5.5 Gráfica de la Correlación entre la Penetración de Internet y el PIB per capita ………………………………………………………………………………….. 78 Figura 5.6 Comparación de las gráficas de Usuarios de Internet en México y Crecimiento del PIB en México……………………………………………………….. 79 Figura 5.7 Porcentaje de usuarios de internet con carrera profesional o postgrado…… 80 Fig. 5.8 Gráfica del porcentaje de urbanización de México…………………………… 82 Fig. 5.9 Gráfica de la Correlación entre la Penetración de Internet y la Urbanización de México……………………………………………………………………………… 83 Figura 5.10 Gráfica de la Distribución de sitios WEB de acuerdo al idioma en el que estaban hechos en 1999 ……………………………………………………………….. 84 Figura 5.11 Gráfica del porcentaje de la población de México que presentado examen TOEFL periodo 1995-2005 …………………………………………………………… 85 Figura 5.12 Gráfica de la Correlación entre la Penetración de Internet y el Nivel de Ingles en México ……………………………………………………………………… 85 Figura 5.13 Gráfica de la Correlación entre la Penetración de Internet y el Nivel de Infraestructura de Telecomunicaciones en México…………………………………… 87 Figura 5.14 Gráfica de la cantidad de líneas telefónicas instaladas y de la cantidad de usuarios de Internet, ambos en México y por cada 1000 habitantes………………….. 88 Figura 5.15 Gráfica del número de líneas telefónicas en algunos países de América Latina………………………………………………………………………………….. 88 Figura 5.16 Gráfica del número de usuarios de Internet en algunos de países de América Latina….……………………………………………………………………... 89 Figura 5.17 Gráficas de número de líneas telefónicas por cada 1000 habitantes en paises de América Latina….…....................................................................................... 89 Figura 5.18 Gráficas de número de usuarios de Internet por cada 1000 habitantes en paises de América Latina……………………………………………….……………... 90 Figura 5.19 Gráfica de suscriptores de acceso dialup en América…………….………. 90 Figura 5.20 Gráfica de suscriptores de acceso de banda ancha en América Latina….... 91. xi.

(12) Figura 5.21 Gráfica de suscriptores de acceso dialup a Internet en EE.UU. y países de Europa……………………………….………………………………………………… 91 Figura 5.22 Gráfica de suscriptores de acceso de banda ancha a Internet en EE.UU. y países de Europa ………………………………………………………………………. 92 Figura 5.23 Gráfica de la Correlación entre la Penetración de Internet y el Marco Político de Democracia ……………………………………………………………….. 93 Figura 5.24 Gráficas de usuarios de internet y calificación otorgada a México en el concepto de internet y el Marco Político de Democracia……………………………… 94 Figura 5.25 Gráfica de ecuación de penetración de Internet…………………………... 96 Figura 5.26 Gráfica de ecuación de penetración de Internet y número de usuarios de Internet en México……………………………………………………………………... 97 Fig. 6.1 Factores que propician la expansión de internet en México………………….. 99. xii.

(13) LISTA TABLAS Tabla 2.1 Acontecimientos más importantes de la historia de Internet........................... 5 Tabla 4.1 Estadísticas mundiales de población y uso de de Internet.............................. 52 Tabla 4.2 Penetración de Uso de Internet en Estados Unidos de América..................... 54 Tabla 4.3 Correlación entre la penetración de Internet y varios factores en Asia........... 63 Tabla 4.4 Penetración de Uso de Internet en Asia ……………………………………. 64 Tabla 5.1. Coeficiente de Correlación de Pearson……………….……………………. 70 Tabla 5.2 Porcentaje total de participación del PIB Informático respecto de PIB total de México y numero de usuarios de internet………………………………................... 74 Tabla 5.3 Número de Usuarios de Internet en México………………………………… 74 Tabla 5.4 Resultado de analisis de correlación de Perarson entre las variables de inversión en infraestructura de telecomunicaciones y la penetracion de internet……... 74 Tabla 5.5 PIB per capita en México…………………………………………………… 78 Tabla 5.6 Resultado de analisis de correlación de Perarson entre las variables de PIB per capita y la penetracion de internet…………………………………………………. 78 Tabla 5.7 Distribución de los usuarios de Internet en México de acuerdo a su grado máximo de estudios años 2002 y 2005.………………………………………………... 81 Tabla 5.8 Porcentaje de urbanización de población de México……………………….. 82 Tabla 5.9 Resultado de analisis de correlación de Perarson entre las variables de porcentaje de población urbana y la penetracion de internet………………………….. 82 Tabla 5.10 Resultado de analisis de correlación de Perarson entre las variables de población que habla ingles en México y la penetracion de internet…………………… 85 Tabla 5.11 Población de México que ha presentado el examen TOEFL……………… 85 Tabla 5.12 Estadísticas de la cantidad de líneas telefónicas instaladas y de la cantidad de usuarios de Internet, ambos en México y por cada 1000 habitantes………………. 87 Tabla 5.13 Resultado de analisis de correlación de Perarson entre las variables de infraestructura en telecomunicaciones bien establecida y la penetracion de internet…. 87 Tabla 5.14 Estadísticas de la cantidad de usuarios de internet y la calificación anual de marco de y de la cantidad de usuarios de Internet, ambos en México y por cada 1000 habitantes………………………………………………………………………… 93 Tabla 5.15 Resultado de analisis de correlación de Perarson entre las variables de 93. xiii.

(14) marco político de democracia y libertad de expresión y la penetracion de internet…… Tabla 5.16 Incrementos de valor de cada variable de penetración a Internet periodo 1996-2010………………………………………………………………………..…….. 96 Tabla 6.1 Resultados del análisis de correlación de Pearson de todas las hipótesis propuestas y la penetración de internet………………………………………………... 98 Tabla 6.2 Resultados del análisis de correlación de Pearson de todas las hipótesis que impulsan la penetración de Internet…………………………………...……………….. 99 Tabla 8.1 Inversión de Telecomunicaciones de Europa (fuente Euromonitor International)………………………………………………………............................... 110 Tabla 8.2 Líneas telefónicas en uso en Europa (fuente Euromonitor International)…. 111. Tabla 8.3 Usuarios de Internet en Europa (fuente Euromonitor International)………... 112 Tabla 8.4 Habitantes totales por país de Europa (fuente Euromonitor International)…. 113 Tabla 8.5 Inversión de Telecomunicaciones de América (fuente Euromonitor International)…………………………………………………………………………... 114 Tabla 8.6 Líneas telefónicas en uso en América (fuente Euromonitor International).. 115. Tabla 8.7 Usuarios de Internet en América fuente Euromonitor International)……….. 116 Tabla 8.8 Habitantes totales por país de América (fuente Euromonitor International)... 117 Tabla 8.9 PIB Informático de Mèxico (fuente I.N.E.G.I.)…………………………….. 118. xiv.

(15) CAPÍTULO 1 INTRODUCCION. 1.

(16) 1. INTRODUCCION El crecimiento y evolución de Internet ha sido algo imparable desde su creación. Las necesidades de contar un mayor ancho de banda, bajo retardo, escalabilidad y calidad de servicio han ido aumentando sin parar y no hay síntomas de que cese.. Cada año aparecen nuevos servicios que hacen uso de Internet y que permiten la apertura de nuevos campos de negocio y posibilidades para los usuarios finales. Esto requiere una demanda de recursos adicionales a los ya existentes y que Internet debe absorber creciendo en diversas direcciones.. Internet es una compleja red que se soporta sobre una topología de interconexión de redes y computadoras en forma de grafo, que no pertenece a ningún organismo ni existe un control centralizado. Su crecimiento no esta definido y depende de una serie de factores sociales, económicos y tecnológicos, que provocan que el crecimiento de la demanda influya directamente en la evolución de esta topología. No se trata de un proceso inmediato, sino que a lo largo del tiempo se puede ver la evolución del crecimiento debido a la suma de muchos pequeños cambios. El análisis de este crecimiento o penetración de Internet en México, permitirá conocer las variables que lo generan e impulsan, para de esta forma detectar a tiempo los posibles problemas que tenga que enfrentar este crecimiento. 1.1. Justificación Hoy en día, en el ámbito de los servicios de Internet en México, la competencia en la industria de las telecomunicaciones requiere que cada proveedor de servicios busque nuevas formas para proveer servicios de mayor calidad al mercado. Los diseñadores de red y de nuevos productos tienen que escoger estratégicamente el camino que las empresas seguirán de manera que pueden llegar a tener una red que sea cada día más rentable. Los estudios realizados hasta ahora sobre la penetración de Internet en México, sólo se limitan a describir a los usuarios, identificando sus principales características, sus hábitos y conductas cuando se conectan a Internet desde un punto de vista de mercadotecnia. En la. 2.

(17) presente tesis se verán cuáles de las hipótesis propuestas tienen un impacto en la penetración de Internet en México. Por lo anterior, este proyecto es derivado de la necesidad de identificar cuáles son los motores que hacen que en México crezca la red de Internet. 1.2. Objetivo El objetivo de la investigación es realizar un estudio para conocer cuáles son los factores en México que propician el crecimiento o la penetración de la red de Internet, no solo para saber cuantas y de qué tipo de acceso son las cuentas que los ISP tienen en sus bases de datos de clientes, sino para conocer más fondo sus causas y las variables que lo impulsan.. Los objetivos particulares que se busca alcanzar son: •. Identificación de los factores o variables que propician el crecimiento de Internet en México.. 1.3. Sumario Modelo de Evolución de Internet en México: Un estudio Mexicano hecho por Armando Carlos Peña Hinojosa.. En esta tesis se examina la relación que existe entre el desarrollo de Internet en México y diversos factores tanto económicos, sociales, como también tecnológicos. Los resultados muestran que la penetración de Internet está ampliamente relacionada con factores como el producto interno bruto per cápita, la urbanización, el número de líneas instaladas y el PIB informático del país.. 3.

(18) CAPÍTULO 2 ANTECEDENTES. 4.

(19) 2. ANTECEDENTES Para entender la red de Internet actual, es preciso dar una mirada a sus orígenes. Sus inicios en el Departamento de Defensa de los Estados Unidos, quien lo desarrolló como un mecanismo de comunicación fiable en caso de una guerra, nadie imaginaría que terminaría siendo la comunidad global, abierta y democrática que es hoy día. La siguiente tabla resume los acontecimientos más importantes de la historia de Internet: Tabla 2.1 Acontecimientos más importantes de la historia de Internet. 1960 ARPANET 1970 ARPANET crece. 1970 UNIX 1970 JANET y EUNET 1986 NFS 1990 Cambio de Administración 1991 1993 Apertura a una nueva gama de servicios 1995 Privatizacón de la red 1996 Proyecto Internet 2 1997 Nuevo Hardware y Software 1998 Internet2-Next Generation Internet WWW Fase 2 Multimedia en la red: Fase 1. El departamento de defensa de USA crea ARPANET como una red experimental para universidades y centros de investigaciones militares. Se unen al proyecto otras universidades de USA Los Laboratorios Bell trabajan en UNIX, sistema operativo que promete posibilidades de interconexión en redes. Comienzan a establecerse redes basadas en UNIX en Reino Unido, Europa y Japón Une 5 centros de supercomputación de universidades a la red. ARPANET cede la administración de la red a NFSNET Inicio Internet comercial Introducción de Interfaces Gráficas de Usuario (GUI) Libre competencia entre proveedores de acceso Al Gore lanza el proyecto Abilene, uno de los cimientos de Internet 2 Terminales NC, Java, Conexión en casa Protocolo IP v. 6 Multicasting XML (eXtensible Markup Language) SMIL(Syncronized Multimedia Integration Language). 2.1. Orígenes y Evolución de Internet Los orígenes de Internet se remontan a más de veinticinco años atrás, como un proyecto de investigación en redes de conmutación de paquetes, dentro de un ámbito militar. A finales de los años sesenta (1969), en plena guerra fría, el Departamento de Defensa de los Estados Unidos de América. llegó a la conclusión de que su sistema de comunicaciones era. demasiado vulnerable. Estaba basado en la comunicación telefónica (Red Telefónica Conmutada, RTC), y por tanto, en una tecnología denominada de conmutación de circuitos, (un circuito es una conexión entre llamante y llamado), que establece enlaces únicos y en número limitado entre importantes nodos o centrales, con el consiguiente riesgo de quedar aislado parte del país en caso de un ataque militar sobre esas arterias de comunicación.. 5.

(20) Como alternativa, el Departamento de Defensa, a través de su Agencia de Proyectos de Investigación Avanzados (Advanced Research Projects Agency, ARPA) decidió estimular las redes de computadoras mediante becas y ayudas a departamentos de informática de numerosas universidades y algunas empresas privadas. Esta investigación condujo a una red experimental de cuatro nodos, que arrancó en Diciembre de 1969, denominada ARPANET. La idea central de esta red era conseguir que la información llegara a su destino aunque parte de la misma estuviera destruida. Los primeros nodos fueron instalados en la Universidad de California en Los Ángeles (UCLA), en el Stanford Research Institute (SRI), en la Universidad de Utah y en la Universidad de California en Santa Bárbara (UCSB), [1]. La decisión clave de diseño en el desarrollo de la ARPANET (red ARPA) fue que la arquitectura de la red estaba basada en una red de Packet Switching (conmutación de paquetes). De esta manera, ARPA desarrolló esta nueva tecnología denominada conmutación de paquetes, cuya principal característica reside en fragmentar la información, dividirla en porciones de una determinada longitud a las que se llama paquetes. En esta tecnología cada paquete lleva asociada una cabecera con datos referentes al destino, origen, códigos de comprobación, etc. Así, el paquete contiene información suficiente como para que se le vaya enrutando hacia su destino en los distintos nodos que atraviese. El camino a seguir, sin embargo, no está preestablecido, de forma que si una parte de la red cae o es destruida, el flujo de paquetes será automáticamente enrutado por nodos alternativos. Los códigos de comprobación permiten conocer la pérdida o corrupción de paquetes, estableciéndose un mecanismo que permite la recuperación. Este sistema de transmisión reúne múltiples ventajas, entre ellos: •. Fiabilidad, independiente de la calidad de líneas utilizadas y de las caídas de la red.. •. Facilidad en la distribución de los datos dado que al contener cada paquete la información necesaria para llegar a su destino, se tiene que paquetes con distinto objetivo pueden compartir un mismo canal o enlace de comunicaciones.. 6.

(21) •. Posibilidad de técnicas de compresión que aumentan la capacidad de transmisión y de encriptado que permiten una codificación, de forma que se asegure la confidencialidad de los datos.. Al igual que en los equipos o en las conexiones, también se evolucionó en los servicios que ofrecía ARPANET, ya que si bien al principio sólo permitía ejecutar programas en modo remoto, en 1972 se introdujo un sistema de correo electrónico, que liberó a los usuarios de la dependencia de los husos horarios (algo de importancia evidente en Estados Unidos, por su gran extensión), y supuso un sorprendente aumento en el tráfico generado, convirtiéndose en la actividad que mayor volumen generaba. La ARPANET fue absolutamente útil y exitosa, creció a cerca de 100 nodos para 1975. En ese año se concluyó que la red estaba estable en su operación, y se pasó su administración de operaciones a la Agencia de Comunicación de Defensa del gobierno norteamericano. Por ese mismo tiempo, la ARPA comenzó las investigaciones de las transmisiones de paquetes sobre redes de enlaces de microondas y vía satélite. En 1974, se presentó el protocolo “Transmission Control Protocol / Internet Protocol” (TCP/IP). Este protocolo proporcionaba un sistema independiente de intercambio de datos entre computadoras y redes locales de distinto origen, pero conservando las ventajas relativas a la técnica de conmutación de paquetes. Al final de los años 1970 fueron exitosos los esfuerzos para conectar diferentes tipos de redes de conmutación de paquetes, la cuáles trabajaban por medio de enlaces vía satélite, redes cableadas y radio enlaces. A principios de los años ochenta, el Departamento de Defensa de Estados Unidos decidió usar el protocolo TCP/IP para la red ARPAnet, desdoblándola en Arpanet y Milnet, siendo esta segunda de uso exclusivamente militar, conectada a Arpanet bajo un tráfico extremadamente controlado. Igualmente en Europa se creó la red Minet, como extensión de Milnet. Para que las computadoras puedan comunicarse entre sí, es necesario que todos ellos envíen y reciban la información de la misma manera. La descripción de los pasos a seguir se denomina “protocolo”. Un gran cambio que ocurrió también a principios de de los años 80`s fue en la organización interna de Internet, ya que originalmente sólo había un sencillo algoritmo de enrutamiento 7.

(22) que estaba implementado uniformemente en todos los routers de Internet. A medida que el número de redes en Internet se multiplicaba, el diseño inicial ya no era capaz de expandirse, por lo que fue sustituido por un modelo jerárquico de enrutamiento con un protocolo IGP (Interior Gateway Protocol) usado dentro de cada región de Internet y un protocolo EGP (Exterior Gateway Protocol) usado para mantener unidas las regiones. Los algoritmos de enrutamiento no eran los únicos en poner en dificultades la capacidad de los routers, también lo hacía el tamaño de las tablas de direccionamiento. Se presentaron nuevas aproximaciones a la adición de direcciones (en particular CIDR, Classless Interdomain Routing, enrutamiento entre dominios sin clase) para controlar el tamaño de las tablas de enrutamiento. Al final de los últimos años ochenta, la red de Internet creció hasta incluir el potencial informático de las universidades y centros de investigación, lo que unido a la posterior incorporación de empresas privadas, organismos públicos y asociaciones de todo el mundo supuso un gran impulso para Internet, dejando de ser un proyecto con protección estatal para convertirse en la mayor red de computadoras del mundo, formada por más de cincuenta mil redes, cuatro millones de sistemas y más de setenta millones de usuarios. Desde la década de 1990, Internet ha experimentado un explosivo crecimiento; el número de hosts o servidores actualmente son contados en más de 10 millones, nuevas redes y proveedores son conectados diariamente. La figura 2.1 nos muestra como ha crecido el número de servidores desde 1970. 480 450 420. Numero de Host (millones). 390 360 330 300 270 240 210 180 150 120 90 60 30 0 1970. 1980. 1990 Año. 8. 2000.

(23) Fig. 2.1 Número de Servidores en Internet.. La razones del crecimiento de Internet se deben parcialmente al hecho de la que computadora personal se han convertido en un artículo casero y también a la proliferación de proveedores de acceso a Internet (ISP, Internet Service Provider), [2]. 2.2. Estructura de Internet Internet es una red distribuida sin jerarquías, esto quiere decir que para ir de un punto a otro de la red se pueden tomar un número de caminos casi ilimitados (esto proviene de su origen, evitar que un ataque nuclear a uno o varios nodos bloqueara todo el sistema). Su cinturón de carreteras preferentes es llamado backbone, haciendo que los servidores que tengan acceso a la red troncal puedan transmitir a mayor velocidad.. La Sociedad Internet (ISOC) es la organización principal de la Internet Engineering Task Force (IETF). Es una asociación internacional no gubernamental no lucrativa para la coordinación global y cooperación en Internet, sus tecnologías y aplicaciones. Sus miembros, a nivel internacional son un reflejo de toda la comunidad de Internet y consisten en. individuos,. corporaciones,. organizaciones. no. lucrativas. y. dependencias. gubernamentales. La Internet Society nació en enero de 1992 gracias a un grupo de individuos y organizaciones del mundo entero que reconocieron que la sociedad es un componente crítico necesario para la evolución y globalización de Internet, sus tecnologías y aplicaciones y para mejorar su disponibilidad y uso en la mayor escala posible. La ISOC ha constituido también las siguientes asociaciones: •. Internet Architecture Board (IAB),. •. Internet Engineering Steering Group (IESG),. •. Internet Assigned Numbers Authority (IANA),. La elaboración de los protocolos corre a cargo del IEFT, que consta de diez grupos de trabajo. La gestión técnica la lleva el grupo llamado IESG, el cual está formado por directores de grupo del IEFT. La asignación de números (IP) y palabras (DNS) es la labor. 9.

(24) de IANA. El IAB es el encargado de editar las normas RFC (Requests for Comments), supervisa la arquitectura de la red y se encarga de las relaciones exteriores técnicas. Finalmente, es también la ISOC (Internet Society) quien se encarga de realizar una supervisión global además de tener a su cargo los aspectos sociales.. 2.2.1. El flujo de información en Internet El procedimiento empleado para intercambiar información en Internet sigue el modelo cliente-servidor. •. Los servidores o hosts son las computadoras donde se almacenan datos.. •. El cliente es la computadora que realiza la petición al servidor para que este le muestre alguno de los archivos almacenados.. En Internet la información se transmite en pequeños grupos o conjuntos de información llamados paquetes. Lo importante es la reconstrucción del mensaje emitido en el destino, no el camino seguido por cada paquete. Si se destruye un nodo de la red, los paquetes encontrarán caminos alternativos. Este procedimiento no es el más eficiente, pero resiste bien las averías de una parte de la red. Para intercambiar información entre computadores es necesario desarrollar técnicas o normas que regulen la transmisión de paquetes. Hacia 1973 aparecieron los protocolos TCP e IP, utilizados ahora para controlar el flujo de datos en Internet. El protocolo TCP se encarga de fragmentar el mensaje emitido en paquetes de origen. En el destino se encarga de reorganizar los paquetes para formar de nuevo el mensaje. El protocolo IP direcciona o enruta los paquetes de información, esto hace posible que los distintos paquetes que forman un mensaje pueden viajar por caminos diferentes hasta llegar al destino. Con tantas computadoras conectadas entre sí, se hace necesaria una herramienta que permita identificar de manera única cada computadora, la cual nos permita saber hacia dónde se manda la información o cuál computadora o server se está visitando. Hay dos tipos de direcciones, las cuáles son: •. Dirección IP: constan de 4 números separados por puntos de la forma XXX.XXX.XXX.XXX donde XXX puede tomar un valor entre 0 y 255. Cada número identifica una subred, de mayor a menor importancia de izquierda a derecha, hasta llegar al último que indica la computadora particular, [3]. 10.

(25) •. DNS: es el sistema de nombres de Dominio, que no es otra cosa que la traducción de las IP a direcciones alfabéticas más fáciles de recordar. En los DNS el sistema es al revés que en las IP, las palabras más a la derecha son las que indican informaciones más generales, mientras que las de la izquierda identifican lo más específico.. Concretamente, la parte de la derecha suele tener un carácter informativo que responde a criterios temáticos o geográficos tales como: •. GOV: organismo perteneciente a la administración de gobierno.. •. MIL: organismo militar. •. COM: compañía comercial. •. EDU: Universidad u organismo dedicado a la enseñanza o investigación. •. NET: Redes integradas en Internet. •. ORG: Organizaciones no comerciales. •. INT: Organización de carácter internacional. 2.3. Evolución de la Topología La red de Internet es la evolución de la interconexión progresiva de multitud de redes de todo el mundo, que há convergido en una compleja red de millones de routers y máquinas que usan la estandarización de los protocolos de la pila OSI (en su versión práctica de TCP/IP) para comunicarse e intercambiar información. La historia del estudio de Internet siempre ha tratado de modelar y reproducir esta estructura matemáticamente, pero su naturaleza escapa a veces de los conceptos más lógicos, puesto que el significado de distancia o de relación puede no estar muy claro. Por otra parte, el número de máquinas, ancho de banda requerido, retardo y nuevos servicios ofrecidos ha ido siempre en aumento desde su creación, pero este crecimiento de la red no ha sido controlado por ningún organismo ni ha sido estandarizado. Por este motivo, el estudio de la evolución de Internet cobra un interés especial, por descubrir cómo ha aumentado la conectividad entre las redes. 11.

(26) y como se ha escalado la estructura del grafo para albergar a todos estos nuevos miembros de Internet. 2.3.1. Arquitectura de Internet. Como se observó, Internet es la interconexión de redes que permite intercambiar información a aplicaciones que se ejecutan en máquinas distintas. En este contexto, se observa que en cada máquina puede haber varias aplicaciones ejecutándose simultáneamente y que necesitan de comunicarse con aplicaciones que se encuentran en otras máquinas de forma similar a la que lo harían con aplicaciones que se encuentren en su misma máquina. Además, las máquinas pueden estar conectadas a redes locales distintas y de tecnologías diferentes. La figura 2.2 nos muestra como puede estar formada una red de datos.. Fig. 2.2 Arquitectura de interconexión de redes (Fuente Internet Routing Architectures), Cisco Systems, Enero de 2000.. Estas características nos llevan la necesidad de unos dispositivos físicos específicos y de un software de comunicación que implemente protocolos de comunicación, estructurado en niveles que se dividan el trabajo necesario para satisfacer las necesidades del sistema planteado. Los requisitos fundamentales de la interconexión de redes son tres: •. comunicación entre redes heterogéneas.. •. enrutamiento y entrega de los datos entre procesos en redes distintas.. 12.

(27) •. la no exigencia de cambios en la arquitectura de las redes que se conectan, acomodándose las diferencias a los sistemas anteriores.. La arquitectura de protocolos que se tiene para resolver estos requisitos, se desglosa en un modelo por niveles para reducir la complejidad. El problema global se subdivide en diversas áreas con problemas aislados y a cada uno de ellos se le asocia un nivel. El modelo de referencia es el Modelo OSI de siete niveles, pero en la práctica la arquitectura de Internet sólo se implementa en cuatro. 2.3.2. El Modelo OSI En 1977, la Organización Internacional de Estándares (OSI), integrada por industrias representativas del medio, creó un subcomité para desarrollar estándares de comunicación de datos que promovieran la accesibilidad universal y una interoperabilidad entre productos de diferentes fabricantes. El resultado de estos esfuerzos es el Modelo de Referencia de Interconexión de Sistemas Abiertos (Modelo OSI). El Modelo OSI plantea solucionar los requisitos de la interconexión de redes en 7 capas o niveles, que son las siguientes: •. Capa Física: Define el medio de comunicación utilizado para la transferencia de información mediante la definición de conexiones físicas entre computadoras. Describe el aspecto mecánico, eléctrico y funcional de la interfaz física.. •. Capa de Enlace de Datos: Proporciona facilidades de transmisión de datos entre dos estaciones de red. Establece la comunicación lógica y el método de acceso que la máquina debe seguir para transmitir y recibir mensajes.. •. Capa de Red: define el enrutamiento y envío de paquetes entre redes. Es su responsabilidad establecer, mantener y terminar las conexiones y conmutar, enrutar y controlar la congestión de paquetes de información en una subred.. •. Capa de Transporte: Actúa de puente entre las tres capas inferiores de comunicación y las tres superiores de proceso y garantiza una entrega confiable de la información.. •. Capa de Sesión: Establece el inicio y final de la sesión y su posible recuperación. Provee los servicios utilizados para la organización y sincronización del diálogo entre usuarios y el manejo e intercambio de datos.. 13.

(28) •. Capa de Presentación: Traduce el formato y asigna una sintaxis a los datos para su transmisión en la red. Determina la forma de presentación de los datos sin preocuparse de su significado o semántica.. •. Capa de Aplicación: Proporciona servicios al usuario del Modelo OSI: comunicación entre dos procesos de aplicación, aspectos para aplicaciones específicos de redes, etc.. El esquema de la pila de protocolos en el modelo OSI para dos máquinas finales separadas por dos nodos intermedios sería el siguiente:. Fig. 2.3 Estructura de capas del Modelo OSI (Fuente Internet Routing Architectures), Cisco Systems, Enero de 2000.. 2.3.3. TCP/IP El Modelo OSI es una estratificación funcional por niveles para tareas de comunicación pero no especifica un estándar de comunicación para dichas tareas. Sin embargo, muchos estándares y protocolos cumplen con las estratificaciones del Modelo OSI. La arquitectura TCP/IP sobre la que se soporta Internet es uno de ellos, pero a diferencia del Modelo OSI, solamente tiene cuatro capas o niveles conceptuales, que son la capa de enlace, la de red, la de transporte y la de aplicación. La correspondencia con el Modelo OSI sería la siguiente:. 14.

(29) Fig. 2.4 Correspondencia entre el Modelo OSI y el modelo TCP/IP (Fuente Internet Routing Architectures), Cisco Systems, Enero de 2000.. Esta pila de protocolos es la que hace funcionar Internet y dentro de ella, entre otros protocolos están el protocolo IP que se encarga del enrutamiento y direccionamiento en el nivel de la capa de interred o “network” y el protocolo TCP que se encarga del control de errores y flujo en el nivel de transporte. 2.3.3.1. IP (Internet Protocol) El protocolo IP proporciona un sistema de distribución no fiable, y especifica que la unidad básica de transferencia de datos es el datagrama. Los datagramas pueden ser retrasados, perdidos, duplicados, enviados en una secuencia incorrecta, porque IP no tiene control de errores, esto es solucionado en el nivel inmediatamente superior. También pueden ser fragmentados intencionadamente para permitir que un nodo con un buffer limitado pueda coger todo el datagrama, siendo responsabilidad del protocolo IP reensamblar los fragmentos del datagrama en el orden correcto en el destino. Otra de sus características es que cuando los datagramas viajan de unos equipos a otros, es posible que atraviesen diferentes tipos de redes. El tamaño máximo de estos paquetes puede variar de una red a otra, dependiendo del medio físico que se emplee para la transmisión. A este tamaño máximo se le denomina MTU (Maximum Transmission Unit), y ninguna red puede transmitir un paquete de tamaño mayor a esta MTU.. 15.

(30) 2.3.3.2. Direccionamiento IP V4 Para poder identificar una máquina dentro de una red se utiliza lo que se llama direccionamiento IP. Cada máquina con el protocolo IP tiene un número de 32 bits único en toda la red, en este caso, es único para toda Internet. Esta dirección IP consta de dos partes: el identificador de red y el identificador de host o máquina.. El identificador de red distingue una red y debe ser asignado por el Network Information Center (InterNIC) si la red forma parte de Internet. Un ISP puede comprar bloques de direcciones de red a InterNIC y puede asignarlos como crea necesario.. El identificador de host distingue a un host en una red y es asignado por el administrador de red. Para facilitar la escritura y memorización, estos números de 32 bits se suelen expresar con 4 números decimales, entre 0 y 255, separados por un punto.. Las redes IP pueden dividirse en redes más pequeñas llamadas subredes (o subnets). El “subnetting” aporta ciertos beneficios al administrador de la red, entre ellos mayor flexibilidad, uso más eficiente de las direcciones de red y la capacidad de contener tráfico broadcast. Las subredes están bajo control administrativo local. De este modo el mundo exterior ve a una organización como una sola red y no tiene conocimiento detallado de la estructura interna de dicha organización Una misma dirección de red puede partirse en varias subredes, por ejemplo 172.16.1.0, 172.16.2.0, 172.16.3.0 y 172.16.4.0 son subredes dentro de la misma red 171.16.0.0. (Todos los ceros en la porción del host de una dirección especifican la red entera) Una dirección de subred se crea quitando bits del campo de host y asignándolos al campo de subred. El número de bits agregados es variable y se especifican mediante la mascara de subred. Esta máscara puede expresarse en binario del mismo modo que la dirección IP o bien en decimal adjunta a la dirección (por ejemplo, 234.122.7.34/24). Dicha máscara nos indica cuantos bits de la dirección indican la red a la que pertenece. Las direcciones IP hacen que el envió de datos entre computadoras se haga de forma eficaz, de un modo similar al que se utilizan los números de teléfono.. 16.

(31) 2.3.3.3. TCP (Transfer Control Protocol). El protocolo TCP proporciona un servicio de comunicación que forma un circuito, es decir, que el flujo de datos entre el origen y el destino sea continuo. Este circuito virtual se le llama conexión. El principal propósito de TCP es proporcionar una conexión lógica fiable entre dos procesos remotos. Sus características principales son: •. Transferencia de datos a través de un canal: Desde el punto de vista del nivel de aplicación, TCP transmite un flujo continuo de bytes a través de Internet. TCP es el que se encarga internamente de trocear los datos en bloques para transmitirlos a través de IP y de reensamblar los recibidos.. •. Fiabilidad: TCP asigna un número de secuencia a cada byte transmitido, y espera un reconocimiento afirmativo (ACK) del TCP receptor. Si el ACK no se recibe dentro de un intervalo de tiempo, los datos se retransmiten. Como los datos se transmiten en bloques (segmentos de TCP), a la máquina de destino sólo se le envía el número de secuencia del byte de cada segmento. El TCP receptor utiliza los números de secuencia para organizar los segmentos cuando llegan fuera de orden, así como para eliminar segmentos duplicados.. •. Control de flujo: El TCP receptor, al enviar un ACK al emisor, indica también el número de bytes que puede recibir aún, sin que se produzca sobrecarga y/o desbordamiento de sus buffers internos. Este valor se envía en el ACK en la forma del número de secuencia más elevado que se puede recibir sin problemas. Este mecanismo se conoce también como mecanismo de ventana.. •. Multiplexación: Consiste en poder mantener varias conexiones TCP entre dos máquinas. Se consigue usando puertos que son dispositivos lógicos que identifican a las aplicaciones.. En resumen, TCP coordina múltiples aplicaciones que se encuentren interactuando con la red simultáneamente de tal manera que los datos que envíe una aplicación sean recibidos correctamente por la aplicación remota. La forma de asegurarlo es añadiendo. 17.

(32) identificadores de cada una de las aplicaciones. Realiza además una verificación por suma, para asegurar que la información no sufrió alteraciones durante su transmisión. 2.3.4. Enrutamiento IP El enrutamiento es el encargado de hacer llegar los paquetes de información a destinos que no se encuentren en la misma red. Físicamente dos redes sólo pueden estar conectadas mediante una máquina, pero la conexión puede no ser óptima, ya que no se puede garantizar que la máquina que une las dos redes coopere en la comunicación de otras máquinas. Para tener una conexión estable se necesitan máquinas dedicadas a transferir continuamente paquetes de una red a la otra. Este tipo de máquinas ó equipos se llaman routers. 2.3.4.1.Routers Un router es un conmutador ó enrutador de paquetes que opera en la capa de red del Modelo OSI. Sus principales características son: •. Permite interconectar tanto redes de área local (LAN) como redes de área extensa (WAN).. •. Proporcionan un control del tráfico y funciones de filtrado a nivel de red, es decir, trabajan con direcciones de nivel de red, como por ejemplo, con direcciones IP.. •. Son capaces de enrutar dinámicamente, es decir, son capaces de seleccionar el camino que debe seguir un paquete en el momento en que les llega, teniendo en cuenta factores como líneas más rápidas, líneas más baratas, líneas menos saturadas, etc.. •. A diferencia de los switches y bridges, que sólo leen la dirección MAC 2, los routers analizan la información contenida en un paquete de red, leyendo la dirección de esta. Los routers leen cada paquete y lo envían a través del camino más eficiente al destino apropiado, de acuerdo a una serie de reglas recogidas en sus tablas de enrutamiento.. El router es entonces la conexión vital entre una red y el resto de las redes.. 18.

(33) 2.3.5. Los Sistemas Autónomos y BGP Una de las formas de estudio de la topología de Internet se basa en abstraer la compleja red de máquinas y routers a una red formada por Sistemas Autónomos (AS). Un AS es un grupo de redes IP compuesto por máquinas y routers bajo una administración común, que tienen una política de enrutamiento común e independiente del resto de los AS. Un AS podría ser una gran empresa, un proveedor de servicios de Internet (o ISP) o un centro de investigación, por ejemplo en [4]. Una representación de un AS se presenta en la figura 2.5.. Fig. 2.5 Representación de un AS (Fuente Internet Routing Architectures), Cisco Systems, Enero de 2000.. Cada AS tiene un número de 16 bits único que le identifica y que le ha sido asignado por un centro Registrador de Rutas de Internet (o Internet Routing Registry, IRR). Esta red de interconexión de AS es mucho más pequeña que la red de máquinas y routers que forma Internet, pero conserva muchos de los datos e indicadores útiles para estudiar su evolución y crecimiento, puesto que las rutas en Internet se construyen a partir de los AS. La red de AS tiene forma de grafo, donde cada AS es un nodo y cada conexión entre dos AS forma un enlace. Aunque un AS tenga muchos routers y conexiones externas con otros routers de otros AS, si se usa esta abstracción se tiene que todos los routers y máquinas de un ASi quedan englobadas dentro del nodo del ASi y todas las conexiones entre varios routers de un mismo ASi con otro ASj quedan englobadas dentro del mismo enlace que conecta los dos AS. La política de enrutamiento común para todos los routers de un AS hace posible. 19.

(34) esta abstracción. Las conexiones entre AS se establecen mediante contratos entre los dos AS participantes y pueden ser de varios tipos: •. De proveedor a cliente.. •. De cliente a proveedor. •. De cliente a cliente).. Este tipo de conexiones identifica el sentido de las rutas que comunican ambos AS, y el rol que adoptará cada uno en el intercambio de datos, [5]. Una representación de la conexión de dos AS se presenta en la figura 2.6.. Fig. 2.6 Interconexión entre 2 AS (Fuente Internet Routing Architectures), Cisco Systems, Enero de 2000.. El protocolo de enrutamiento que se utiliza para la gestión de las rutas entre AS es BGP (Border Gateway Protocol). El protocolo BGP se encarga de mantener, aprender y comunicar las rutas entre AS y también de enrutar cada paquete de datos que circula a través del AS. El funcionamiento de BGP es complejo y muy amplio, pero la parte principal se conforma como una estructura y almacena las rutas en las tablas BGP. Una tabla BGP de un AS consiste en una lista con todos los prefijos de red IP disponibles en Internet y para cada prefijo, una secuencia de números de AS que indica la ruta que tiene que seguir un paquete de datos para llegar a la red destino de dicho prefijo. Además de la ruta de AS, también tiene la dirección IP del próximo router o salto a visitar y una serie de parámetros más que utiliza el protocolo BGP. El formato de una tabla BGP es el siguiente:. 20.

(35) Fig. 2.7 Formato de Tablas de BGP (Fuente Internet Routing Architectures), Cisco Systems, Enero de 2000.. En una tabla BGP esta contenida una gran información sobre la topología de Internet. Para extraer estos datos, se programan un conjunto de scripts en lenguaje Perl que permiten el análisis automático e iterativo de cada tabla. Este primer grupo de scripts genera un gran volumen de datos con la representación de la topología de toda Internet en forma de grafo. Como la tabla contiene un enorme conjunto de caminos, se pueden fijar todos los AS conocidos y después añadir todos los enlaces entre ellos que indiquen los caminos. Por tanto, de la tabla BGP se ha obtenido el grafo de AS de Internet. De este grafo, se puede obtener directamente ciertas métricas de su topología, como puede ser el grado de cada nodo o AS, el coeficiente de clustering o la longitud media del camino. Posteriormente, estos datos generados por el primer conjunto de scripts se filtran y analizan por un segundo conjunto de scripts, que son los que profundizan más para sacar métricas más avanzadas, extraen la ubicación geográfica e IRR de cada AS (utilizando una base de datos externa a la tabla) y separan Internet en los tres grupos Customers, Regional ISP y Core. Una vez aplicados todos estos scripts se obtiene un conjunto de datos mucho más tratable y que se usará para obtener los resultados referentes a una sola tabla BGP. El siguiente esquema ilustra el proceso para una tabla:. 21.

(36) Fig. 2.8 Esquema del proceso de análisis de una tabla de BGP (Fuente Internet Routing Architectures), Cisco Systems, Enero de 2000.. 2.3.6. Enrutamiento de Sistemas Autónomos Protocolos interiores (IGP) A diferencia del enrutamiento exterior, donde se utiliza el BGP de forma estándar, en el enrutamiento interior hay un gran número de protocolos diferentes debido a la variedad de topologías y tecnologías que pueden formar un AS. Aunque raramente dentro de un AS se utiliza más de uno para sus comunicaciones internas. Los más conocidos son el Routing Information Protocol (RIP) basado en el principio "vector de distancias" y el Open Shortest Path First Protocol (OSPF) basado en "estado de enlaces". Protocolos exteriores (EGP) Se pueden clasificar los protocolos de enrutamiento exteriores según el modo que el protocolo representa la topología de la red y los prefijos IP que son alcanzables desde dicha red. Estas dos categorías son los protocolos de vector de distancias (Distance Vector, DV) y los protocolos de estado de enlaces (Link State, LS). El funcionamiento de cada uno (sin entrar en detalles ni ejemplos porque no son relevantes para este proyecto) es el siguiente: •. Vector de distancias (DV): Un protocolo DV que funcione sobre un nodo empieza inicializando una tabla con información acerca de los prefijos a los que esta directamente conectado. El coste asociado a esos enlaces es cero. El coste para el resto de prefijos alcanzables se calcula sumando la métrica del enlace al coste que anuncia el router vecino por el que se llega ese prefijo. La ventaja de los protocolos DV reside en que son fácilmente comprensibles y sencillos de implementar. Las desventajas son que contienen elementos que afectan negativamente a la escalabilidad y no pueden manejar ciertas situaciones en caso de fallo. La principal razón es que los mensajes que se pasan los routers unos a otros son básicamente tablas de enrutamiento. Esta información expira al cabo de cierto tiempo y por tanto es necesario retransmitir de nuevo a intervalos concretos. Como las redes de hoy en día pueden contener varios cientos de miles de prefijos, el factor de escalabilidad limita el uso de los protocolos DV.. 22.

(37) •. Estado de enlace (LS): Esta clase de protocolos trabaja de manera muy distinta a la forma como lo hacen los protocolos DV. El modo en el que la información se comunica es a través de LSPs (Link State Packets). Estos paquetes contienen información del router que los genera y de los routers y redes a los que está conectado, incluyendo el coste para llegar a ellos. Un router genera un LSP por sí mismo y se lo envía al resto de sus vecinos. Esto se repite cada vez que el router se enciende, cada vez que hay un cambio topológico (por ejemplo, la caída de un enlace), o periódicamente para refrescar antiguos LSP en la red. Hay un algoritmo que se encarga de asegurar que cada LSP de cada router es entregado al resto de routers en la red. Una vez que un router haya recibido todo el conjunto de LSP de la red, puede construir un mapa topológico de la red y después hacer cálculos para decidir cual es el camino más corto para llegar a cualquier destino.. Una distinción importante entre los protocolos DV y LS es que los nodos que utilizan protocolos LS, tienen información completa acerca de la topología de la red y de todos los caminos posibles. La implicación más importante de esta característica es que son protocolos que soportan mayor escalabilidad. Primero porque los mensajes que se envían son mas reducidos, y segundo porque cuando hay un cambio en la topología de la red, la información que debe enviarse es proporcional al cambio que se ha producido. En los protocolos DV, si hay un cambio topológico, la cantidad de información que circula está en función del número de prefijos que hay en la red (que suele ser muchísimo mayor).. 2.3.7. BGP (Border Gateway Protocol) BGP es un protocolo que utiliza algoritmos del tipo DV dentro de la clase de los EGPs. Usa TCP como protocolo de transporte y por ello siempre involucra dos nodos. En un momento dado pueden coexistir varias sesiones BGP dentro de una red, y un router puede tomar parte en varias de ellas, pero lo importante es que en una sesión concreta sólo tiene lugar entre dos routers. Estos, antes de iniciar una sesión BGP establecen una conexión TCP y a partir. 23.

Figure

Fig. 2.2 Arquitectura de interconexión de redes (Fuente Internet Routing Architectures), Cisco Systems,  Enero de 2000
Fig. 2.3 Estructura de capas del Modelo OSI (Fuente Internet Routing Architectures), Cisco Systems, Enero  de 2000
Fig. 2.4 Correspondencia entre el Modelo OSI y el modelo TCP/IP (Fuente Internet Routing Architectures),  Cisco Systems, Enero de 2000
Fig. 2.6 Interconexión entre 2 AS (Fuente Internet Routing Architectures), Cisco Systems, Enero de 2000
+7

Referencias

Documento similar

dente: algunas decían que doña Leonor, "con muy grand rescelo e miedo que avía del rey don Pedro que nueva- mente regnaba, e de la reyna doña María, su madre del dicho rey,

Abstract: This paper reviews the dialogue and controversies between the paratexts of a corpus of collections of short novels –and romances– publi- shed from 1624 to 1637:

Entre nosotros anda un escritor de cosas de filología, paisano de Costa, que no deja de tener ingenio y garbo; pero cuyas obras tienen de todo menos de ciencia, y aun

por unidad de tiempo (throughput) en estado estacionario de las transiciones.. de una red de Petri

We have created this abstract to give non-members access to the country and city rankings — by number of meetings in 2014 and by estimated total number of participants in 2014 —

Por lo tanto, en base a su perfil de eficacia y seguridad, ofatumumab debe considerarse una alternativa de tratamiento para pacientes con EMRR o EMSP con enfermedad activa

The part I assessment is coordinated involving all MSCs and led by the RMS who prepares a draft assessment report, sends the request for information (RFI) with considerations,

o Si dispone en su establecimiento de alguna silla de ruedas Jazz S50 o 708D cuyo nº de serie figura en el anexo 1 de esta nota informativa, consulte la nota de aviso de la