• No se han encontrado resultados

Unidad 03 Organización Molecular de la Célula

N/A
N/A
Protected

Academic year: 2020

Share "Unidad 03 Organización Molecular de la Célula"

Copied!
23
0
0

Texto completo

(1)

O

OR

RG

G

A

A

N

N

IZ

I

Z

AC

A

C

I

Ó

N

N

M

M

O

O

LE

L

E

C

C

UL

U

LA

AR

R

D

D

E

E

L

L

A

A

CÉLULA

INDICE

La estructura del átomo de carbono

La molécula de agua

Las biomoléculas:

Glúcidos

Lípidos

Proteínas

Ácidos Nucleicos

(2)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 2

O

O

R

R

G

G

A

A

N

N

I

I

Z

Z

A

A

C

C

I

I

Ó

Ó

N

N

M

M

O

O

L

L

E

E

C

C

U

U

L

L

A

A

R

R

D

D

E

E

L

L

A

A

CÉLULA

Los seres vivos son sistemas muy complejos, altamente organizados. Cada célula realiza una amplia variedad de funciones especializadas en los organismos pluricelulares. Sin embargo, las células siguen patrones comunes de funcionamiento, basándose en principios físicos y químicos que se asientan en estructuras y componentes comunes.

La biología molecular moderna intenta comprender los procesos moleculares y las reacciones químicas que hacen posible el funcionamiento de la célula. Las funciones celulares están, a su vez, determinadas por la estructura de sus componentes. Por esto, resulta fundamental analizar y conocer la organización estructural de las moléculas de los organismos vivos.

MARCO TEÓRICO

Los compuestos orgánicos están constituidos por moléculas organizadas en base a átomos de carbono.

Recomendamos repasar los conceptos de átomo, molécula y uniones químicas adquiridos previamente.

El átomo de carbono posee una configuración tetraédrica.

Los átomos de C suelen unirse otros átomos, formando grupos que confieren ciertas propiedades a la molécula o grupos funcionales. Los principales son:

Configuración electrónica tetraédrica del átomo de C.

Los electrones de valencia se ubican en los puntos a, b, c y d. Los átomos de C se unen entre sí y con otros átomos (H, O, N, etc.) formando las moléculas de los compuestos orgánicos.

Grupos funcionales

(3)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 3

El agua es el solvente en el cual se encuentran todas las sustancias que forman parte de los seres vivos.

Debido a su estructura polar, las moléculas de agua pueden formar uniones puente hidrógeno entre sí y con otras moléculas polares. Esto le otorga propiedades físicas específicas.

Las moléculas polares, forman puentes de hidrógeno con el agua y son, por lo tanto, hidrosolubles.

Las moléculas no polares, como por ejemplo los hidrocarburos, las grasas y aceites, no pueden formar puentes de hidrógeno con el agua, por lo que son insolubles en ella y solubles en medios no polares (liposolubles).

Estructura de la molécula de H2O.

La molécula forma un dipolo, con cargas positivas y negativas.

Puentes de Hidrógeno entre moléculas de agua.

Micela

Bicapa

(4)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 4

Existen moléculas que poseen una parte soluble en agua y otra no. Son las moléculas

anfipáticas, como los ácidos grasos, los fosfolípidos, etc.

Las moléculas anfipáticas, en agua, forman micelas, como los ácidos grasos, o bicapas, como en el caso de los fosfolípidos.

El agua interactúa de distinta manera con las diversas moléculas constituyentes de los seres vivos. Estos compuestos poseen distintos grados de complejidad estructural y se denominan

biomoléculas. Son los glúcidos o hidratos de carbono, los lípidos, las proteínas y los ácidos nucleicos.

GLÚCIDOS O HIDRATOS DE CARBONO

Son poli hidroxi aldehídos o poli hidroxi cetonas que cumplen numerosas funciones en los seres vivos. Su fórmula general es: Cn(H2O)n para n > 3

Se clasifican según distintos criterios. Según el número de carbonos, son Triosas, Tetrosas,

Pentosas, Hexosas, etc. Según contengan grupo aldehído o cetona, se agrupan en aldosas y

cetosas. Según los criterios de isomería óptica, se dividen en Serie L y Serie D. Así, la glucosa que sirve como combustible energético universal para las células, es una D-aldohexosa, porque contiene un grupo aldehído, seis carbonos y pertenece a la serie D de isómeros ópticos.

Recomendamos repasar los conceptos de isomería adquiridos previamente.

Los compuestos con carbonos asimétricos (cuatro sustituyentes distintos) pueden desviar la luz polarizada de distinta forma, presentando isomería óptica. Los isómeros ópticos se diferencian en que desvían el plano de la luz polarizada hacia la derecha (isómero dextrógiro o D) o hacia la izquierda (isómero levógiro o L).

ISOMERO CARACTERÍSTICA

Enantiómeros

Isómeros ópticos en los que no puede superponerse la imagen especular de uno con la del otro. Tienen las mismas propiedades físicas y químicas, excepto por la forma en que desvían la luz polarizada

Epímeros

Solo difieren entre sí por la orientación del oxhidrilo de uno de sus carbonos asimétricos. Ejemplo: D-glucosa y D-galactosa (difieren en la posición del oxhidrilo del C4) Tienen distintas propiedades.

Tautómeros

Resultan del reordenamiento molecular con la formación de un puente oxígeno entre carbonos. Ejemplos: glucopiranosa (originada por la glucosa), fructofuranosa (originada por la fructosa).

Anómeros

(5)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 5

Para ampliar los conceptos de estructura y conformación de las moléculas de glúcidos, sugerimos consultar la bibliografía utilizada para la materia.

Derivados de glúcidos

En los seres vivos existen diversos mecanismos que transforman los glúcidos en moléculas derivadas, con diversas funciones biológicas:

Ejemplo Función

Derivados ácidos Ácido C-6 D-glucurónico Componente de la matriz extracelular

Esterificación Ésteres fosfóricos de ribosa y desoxirribosa

Constituyentes de los ácidos nucleicos (ARN y ADN)

Aminación Ácidos siálicos Componentes de diversos tejidos como el conectivo. Enantiómeros

D y L eritrosa

Epímeros

Anómeros

α y β D-glucosa

(6)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 6

Monosacáridos de importancia biológica

Monosacárido Clase Función Ejemplo

Tetrosas aldotetrosas Participación en ciclo de Calvin y vía de las pentosas

D eritrosa ; D treosa L eritrosa ; L treosa Pentosas aldopentosas Formación de nucleótidos y

proteoglucanos

D ribosa Desoxirribosa Ribosa 5 P Xilosa Cetopentosas Participación en ciclo de Calvin

y vía de las pentosas

D ribulosa

Hexosas

Aldohexosas Participación en glucólisis, combustible energético

D glucosa D manosa D galactosa Cetohexosas Participación en glucólisis,

combustible energético

D fructosa

La unión por condensación de dos monosacáridos forma un disacárido y se desprende una molécula de agua.

Disacáridos de importancia biológica:

Disacárido Monosacáridos que lo forman

Unión glucosídica Poder reductor Forma de obtención

Maltosa Glucosa y glucosa α 1 - 4 Si Libre en cebada

Por hidrólisis de almidón

Isomaltosa Glucosa y glucosa α 1 – 6 Si Por hidrólisis de glicógeno Celobiosa Glucosa y glucosa β 1 – 4 Si Por hidrólisis de

celulosa Lactosa Galactosa y glucosa β 1 – 4

(galactosídica)

Si Libre en leche

Sacarosa Glucosa y fructosa α 1 – 2 No Libre en caña y remolacha

Polisacáridos

(7)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 7

Polisacárido Estructura Función

Almidón Ramificada. Uniones  4 y  1-6 entre glucosas

Reserva energética en vegetales.

Glucógeno Ramificada. Uniones  4 y  1-6 entre glucosas

Reserva energética en hígado y músculos animales.

Celulosa Fibrosa. Uniones  1-4 entre

glucosas.

Pared celular en células vegetales

Los heteropolisacáridos tienen una composición más heterogénea y cumplen diversas funciones. Los glicosaminoglicanos (GAGs) y los proteoglicanos son ejemplos de heteropolisacáridos.

Para ampliar los conceptos de estructura y

conformación de los heteropolisacáridos, sugerimos consultar la bibliografía utilizada para la materia.

LÍPIDOS

Son un grupo heterogéneo de compuestos con características físicas en común: no solubles en agua, solubles en solventes no polares, bajo punto de fusión y son semilíquidos a temperaturas corporales.

Estructura y función de los lípidos:

Lípidos saponificables

Contienen por lo menos un ácido graso frecuentemente esterificado

Clase Definición Función

Glicéridos Ésteres de glicerol con ácidos grasos saturados o no saturados

Reservorios energéticos Aislante térmico

Fosfoglicéridos Esteres de glicerol con ácidos grasos (C1 saturados, C2 no saturados) y con

ácido fosfórico en C3

Estructural, componente de membranas celulares

Ceramidas Amida entre esfingol (en el N del C2) y

un ácido graso

(8)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 8

Lípidos insaponificables Derivan de la polimerización del isopreno

Clase Definición Función

Terpenos Formados por dos o más unidades de isopreno

Intervienen en la formación de coenzima Q, vitaminas liposolubles y pigmentos vegetales

Esteroides Derivados cíclicos del isopreno (ciclopentanoperhidrofenantreno)

Forman esteroles (colesterol), vitamina D, ácidos biliares, hormonas esteroideas

Propiedades físicas y características de los ácidos grasos:

Propiedad Efecto en el ácido graso

Comportamiento en medio acuoso Anfipático

La solubilidad disminuye con el aumento del número de carbonos

Comportamiento ácido-base Ácidos débiles

El pK no varía con el aumento del número de carbonos

Presencia de dobles ligaduras Disminuyen el punto de fusión

Aumentan solubilidad en solventes orgánicos

Derivados del esfingol:

Porción lipídica Hidrato de carbono que lo forma

Nombre

Ceramida con función éster en alcohol primario con fosfocolina

Ningún H de C

Esfingosina (amino alcohol) + un ácido graso ceramida. Es la unidad estructural fundamental de todos los esfingolípidos.

Esfingomielina

Ceramida entre esfingol y un ácido graso de 24 carbonos

Galactosa Cerebrósido

Ceramida entre esfingol y un ácido graso de 24 carbonos

Oligosacárido Gangliósido

CUESTIONARIO

1. Indique sí las siguientes afirmaciones son verdaderas o falsas. Justifique su elección

a) ___ El átomo de carbono forma uniones puente de hidrógeno entre sí y con átomos de otros elementos.

b) ___ La posibilidad de formar cadenas y anillos de diverso tamaño se debe únicamente a la capacidad del átomo de carbono de formar enlaces covalentes triples.

c) ___ El elemento oxígeno es muy electropositivo debido a su habilidad para atraer electrones.

(9)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 9

1. Complete el siguiente cuadro comparativo entre uniones intermoleculares

Tipo de Unión Moléculas en las que se produce

Distribución de las cargas

Cantidad de energía de unión relativa Interacciones

hidrofóbicas

Enlaces puente de hidrógeno

3. Complete la siguiente frase:

El agua es una molécula ______________ que forma enlaces ______________________ entre sus moléculas, como consecuencia presenta ______________________________.

Los glúcidos se disuelven fácilmente en agua por ser ______________________ .

4. Indique sí las siguientes afirmaciones son verdaderas o falsas. Justifique su elección

a) ___ La glucosamina se forma por esterificación de la glucosa con ácido aspártico. b) ___ En los oligosacáridos se forman uniones glucosídicas entre todos sus constituyentes.

5. Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique su elección

a) La esfingomielina se encuentra en la capa interna de la bicapa lipídica de la membrana plasmática. b) Los gangliósidos y cerebrósidos presentan idénticos glúcidos en su composición.

6. Complete los espacios en blanco:

La fosfatidil serina está formada por _______________________, dos ácidos ___________ y ________________________. En soluciones acuosas forma __________________ debido a su carácter ___________________________ .

7. Complete el cuadro respecto de los polisacáridos

Polisacárido Estructura química Función Células en las que se encuentran Almidón

Glucógeno Celulosa Quitina

8. Escriba un breve párrafo vinculando los siguientes conceptos

(10)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 10

9. Complete las definiciones y dé un ejemplo de cada uno de los siguientes términos: Monosacárido: _____________________________________________________

Disacáridos: _______________________________________________________

Aldotetrosa: _______________________________________________________

Cetohexosa: _______________________________________________________

Señale la opción correcta:

10. La molécula de agua:

a. forma un ángulo de unión entre sus átomos es de 115° b. es una molécula polar

c. posee un alto peso molecular d. presenta simetría en su molécula

11. ¿Cuál de las siguientes moléculas es totalmente soluble en agua? a. ácido linolénico

b. dolicol c. galactosa d. escualeno

12. Señale la opción correcta respecto de los fosfoacilgliceridos: a. poseen una unión éter en el carbono 3 con el ácido fosfórico b. presentan una cola hidrofílica

c. poseen carácter anfibólico

d. se ubican en la membrana plasmática

13. Los polisacáridos de reserva animal y vegetal respectivamente son: a. glucógeno y almidón

b. glucógeno y celulosa c. glucosa y almidón d. glucógeno y quitina

14. Las moléculas de lípidos se caracterizan porque: a. forman polímeros no solubles

b. presentan bajos pesos moleculares c. son solubles en solventes no polares. d. son solubles en solventes polares

15. La capacidad disolvente del agua es consecuencia de:

a. la tendencia que tienen sus moléculas de formar puentes de hidrógeno entre sí b. la tendencia a formar puentes de hidrógeno con otras sustancias

c. a su elevada tensión superficial y su alto calor específico

(11)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 11

16. ¿Cuáles de las siguientes moléculas son hexosas?: a. Galactosa, glucosa y fructosa

b. Lactosa, maltosa y sacarosa c. Sacarosa, glucosa y ribosa

d. Desoxirribosa, fructosa y galactosa

17. Si un oligosacárido de hidroliza completamente se obtiene: a. cadenas más pequeñas de oligosacáridos

b. glucosas c. monosacáridos d. disacáridos

PROTEÍNAS

Las proteínas son polímeros de aminoácidos. La estructura general de una molécula de aminoácido es la siguiente:

Las propiedades químicas de las diferentes cadenas laterales (R) determinan la función de cada aminoácido en la estructura y función proteicas.

Los aminoácidos se agrupan en cuatro categorías dependiendo de las propiedades de las cadenas laterales o grupos R:

Aminoácidos no polares: con cadenas laterales no polares, hidrófobas. Tienden a localizarse en el interior de las proteínas.

Aminoácidos polares: con cadenas laterales polares, son hidrófilos. Tienden a localizarse en el exterior de las proteínas.

Aminoácidos básicos: están cargados positivamente, por lo que son hidrófilos. Aminoácidos ácidos: están cargados negativamente, son hidrófilos.

FUNCION PROTEÍNAS

Estructural Colágeno, queratina

Transporte Hemoglobina, mioglobina

Defensa Inmunoglobulinas

Catalizadores biológicos Enzimas

Hormonas Insulina

Ejecutan las funciones celulares. Dependen de la información contenida en el ADN.

Son las biomoléculas más variadas, con una amplia gama de funciones. Algunos ejemplos son:

C H

H2N COOH

(12)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 12

Los aminoácidos están unidos por enlaces peptídicos. Se producen entre el carboxilo del primer aminoácido y el amino del segundo.

Estructura de las Proteínas

Una proteína consiste en una secuencia específica de aminoácidos que adoptan una configuración tridimensional característica crucial para su función. La estructura proteica se describe en cuatro niveles: estructura primaria, secundaria, terciaria y cuaternaria.

Estructura Definición Enlace que

Participa

Clase

Primaria Secuencia de residuos de aminoácidos

Peptídico ---

Secundaria Conformación espacial por la interacción entre los restos laterales de los aminoácidos entre sí

Puente de hidrógeno α hélice β hoja plegada

Terciaria Plegamiento espacial por

interacción de los restos laterales de los aminoácidos con el medio

Fuerzas electrostáticas, interacciones

hidrofóbicas, puente de hidrógeno, puentes disulfuro

Globular Fibrosa

Cuaternaria Interacciones no covalentes entre las cadenas polipépticas de una proteína

Fuerzas electrostáticas, interacciones

hidrofóbicas, puente de hidrógeno

---

Las proteínas pueden perder sus estructuras cuaternaria, terciaria y secundaria por “desnaturalización”. Su estructura primaria solo se pierde por hidrólisis (ruptura de los enlaces peptídicos).

C H

H2N COOH

CH3

C H

H2N COOH H

+

C H

H2N CO CH3

C H

HN COOH H

+

H2O alanina

glicina

(13)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 13

Proteínas conjugadas

Son proteínas que poseen una fracción o grupo no peptídico, llamado grupo prostético, unido a la parte proteica en forma covalente.

Proteína conjugada Grupo prostético Ejemplos

Glicoproteína Glúcidos (uno o más monosacáridos)

Inmunoglobulinas; proteínas de membrana

Lipoproteína Fosfolípidos, ácidos grasos, lípidos neutros

Quilomicrones; rodopsina

Nucleoproteína Ácidos nucleicos Proteínas virales

Metaloproteína Metales o iones metálicos Ferritina; carboxipeptidasa

Hemoproteína Grupo hemo Hemoglobina; mioglobina Flavoproteína Derivados vitamínicos Enzimas de óxido-reducción

Dinámica y Función de las Proteínas

Hemoglobina y Mioglobina

La hemoglobina es una hemoproteína presente en los glóbulos rojos. Su función es el transporte de oxígeno desde los pulmones hacia las células, y de CO2 desde éstas a los pulmones. También participa en la regulación del pH sanguíneo.

Posee estructura cuaternaria ya que está formada por cuatro cadenas polipeptídicas (cuatro subunidades). A cada cadena se une un grupo hemo, que contiene un átomo de hierro capaz de unirse de forma reversible al oxígeno.

La mioglobina es una hemoproteína muscular, estructural y funcionalmente muy similar a la hemoglobina. Está constituida por una única cadena polipeptídica que contiene un grupo hemo con un átomo de hierro. Su función es almacenar y transportar oxígeno en el músculo esquelético.

La mioglobina tiene mayor afinidad por el oxígeno a todas las presiones parciales de O2.

Estructura del grupo hemo

(14)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 14

Efecto cooperativo

Debido a su estructura cuaternaria, la hemoglobina es una proteína alostérica. Esto significa que la unión del O2 a una de las subunidades de la proteína, aumenta la afinidad de unión de O2

a las otras tres.

Para ampliar el concepto de Efecto Cooperativo, sugerimos consultar la bibliografía utilizada para la materia.

P O 2

Saturación

Curvas de unión al oxígeno a la Mioglobina y la Hemoglobina Mioglobina

Hemoglobina

Efecto cooperativo

(15)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 15

La afinidad de la hemoglobina por el oxígeno puede ser modificada por las variaciones de pH o por la presencia de BPG (2,3 di-fosfoglicerato).

La curva de disociación de la hemoglobina se desplazará a la derecha por:

- descenso del pH - aumento de H+ - aumento de 2,3-BPG

- aumento de la pCO2 y temperatura

Los protones disminuyen la afinidad de la hemoglobina por el 02 (A): La disminución del pH de

7.6 a 7.2 resulta en la mayor liberación de 02 de la Hb02 (hemoglobina oxigenada).

(B): En los glóbulos rojos, en presencia de BPG, la hemoglobina tiene mucho menor afinidad por el 02 que en solución salina.

2,3 – BPG

Presente en alta concentración en la sangre, está cargado negativamente a pH fisiológico.

Efecto del pH y del BPG sobre la afinidad de la hemoglobina por el 02

(16)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 16

El transporte de O2, CO2 y H+ por la hemoglobina involucra procesos diferentes en los capilares

sanguíneos de los tejidos y en los capilares que bordean los alvéolos pulmonares.

Durante el desarrollo fetal, la hemoglobina de los glóbulos rojos del feto tiene mayor afinidad por el O2 que la hemoglobina materna. Esto permite que la hemoglobina fetal se sature a la presión de O2 existente en el útero materno.

Colágeno

El colágeno es una proteína fibrosa cuya estructura determina funciones de soporte, protección y resistencia mecánica a la tracción. Es secretada por células de la piel, del tejido óseo, forma parte de la córnea y de los tendones. Es un componente muy abundante de los tejidos de todos los mamíferos.

A. B.

Transporte de O2, CO2 y H+ a nivel de Capilares

A: a nivel de los capilares que recorren los tejidos. B: a nivel de los capilares de los alvéolos pulmonares.

Saturación

P O2

Hemoglobina fetal

La hemoglobina fetal (F) tiene estructura molecular diferente a la del adulto (A). Durante el desarrollo embrionario, el O2 fluye desde la

(17)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 17

Estructura del Colágeno

Estructura Primaria Estructura Secundaria

Cadenas formadas por repetición de los aminoácidos: glicina, prolina, hidroxiprolina y, a veces, hidroxilisina.

Tropocolágeno: triple hélice formada por unión de tres cadenas como las descriptas para la estructura primaria.

Las moléculas de tropocolágeno se asocian en una micro fibrilla.

ACIDOS NUCLEICOS

Los ácidos nucleicos contienen y transmiten la Información Genética. Son el ADN (ácido desoxi ribo nucleico) y el ARN (ácido ribo nucleico), moléculas poliméricas cuyos monómeros son los nucleótidos.

Nucleótidos: molécula formada por un hidrato de carbono

(ribosa o desoxi ribosa). Una base nitrogenada y uno a tres grupos fosfato Estructura del colágeno

(18)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 18

Las bases nitrogenadas que pueden formar parte de un nucleótido son:

- pirimidínicas: citosina, timina, uracilo

- púricas: adenina, guanina

En las células, los nucleótidos pueden encontrarse en forma de polímeros o estar libres. En este último caso cumplen diversas funciones como transportar energía, intervenir en la transmisión de señales químicas, transportar electrones y H+, etc. Estas funciones serán analizadas en capítulos próximos.

Al polimerizarse, los nucleótidos se unen covalentemente entre sí, formando polinucleótidos.

Las uniones son de tipo fosfo-di-éster, y se producen entre el fosfato del C 5´ de un nucleótido y el C 3´ del nucleótido precedente.

Ácido ribonucleico (ARN)

El ARN es un poli nucleótido de ribosa, que contiene las bases adenina, guanina, citosina y uracilo. Está formado por una sola cadena y puede ser:

- ARN mensajero (ARNm): copia la secuencia de nucleótidos del ADN y sirve de “molde” para formar proteínas. Su estructura es una cadena lineal de nucleótidos.

- ARN de transferencia (ARNt): reconoce y se une a los aminoácidos del citoplasma, transfiriéndolos a los ribosomas. Presenta estructura de cadena plegada sobre sí misma. - ARN ribosomal (ARNr): constituyen los ribosomas.

(19)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 19

Ácido desoxi ribonucleico (ADN)

El ADN es el ácido nucleico que contiene la información genética. Es capaz de auto replicarse y sirve de molde para sintetizar ARN, y luego proteínas.

Según el modelo propuesto por Watson y Crick, está formado por dos cadenas de polinucleótidos, dispuestas en forma de doble hélice, y unidas por puentes de hidrógeno entre bases complementarias: Adenina y Timina ; Citosina-Guanina.

El ARNm copia la secuencia de nucleótidos del ADN (gen) y la lleva al ribosoma donde se sintetiza la proteína Estructura del ARN

A: esquema de un fragmento de ARNm; B: esquema de un ARNt; C: esquema de un ribosoma

(20)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 20

La secuencia de nucleótidos es “propia de cada individuo”, determinando la información genética de ese organismo, que se transmitirá por herencia.

En la célula, el ADN determina la producción de proteínas y otras moléculas esenciales para el funcionamiento celular.

En síntesis, la estructura de los ácidos nucleicos es:

Acido nucleico

Base nitrogenada

Pentosa Acido inorgánico

Clase

ADN

Adenina Guanina Citosina Timina

Desoxirribosa Fosfórico

ADN B ADN A ADN Z

ARN

Adenina Guanina Citosina Uracilo

Ribosa Fosfórico

ARN m ARN t ARN r

CUESTIONARIO

1. Indique sí las siguientes afirmaciones son verdaderas o falsas. Justifique su elección

a) ___ La unión peptídica es una unión de tipo amida entre dos aminoácidos.

b) ___ La estructura secundaria de una proteína depende de la secuencia de aminoácidos de la misma.

(21)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 21

2. Complete el siguiente cuadro con la definición de las clases de proteínas

Clase Definición

Simples

Conjugadas

Oligoméricas

Globulares

3. Confeccione un párrafo utilizando los siguientes conceptos

desnaturalización – conformación nativa – altas temperaturas – solventes orgánicos – base fuerte – función biológica

4. Complete el siguiente esquema con respecto a la afinidad de la hemoglobina por el O2:

Hemoglobina + O2 en presencia de ... ...

en presencia de ...

...

5. Complete el cuadro sobre las características de algunas de las enfermedades hereditarias que afectan al colágeno

Enfermedad Alteración bioquímica Consecuencia observada en la molécula de

colágeno Osteogenesis imperfecta Anormalidad en los genes

que codifican para el procolágeno

Síndrome de Ehlers-Danlos Deficiencia de lisil hidrolasa Síndrome de Marfán Producción de cadenas de

procolágeno más largas

6. Indique si la siguiente afirmación es o no correcta:

Las moléculas de ADN poseen un esqueleto covalente formado por pentosas unidas con fosfatos. Las dos cadenas se mantienen unidas por enlaces de tipo puente de hidrógeno.

7. Distinga entre:

a) nucleótido – nucleósido

b) base púrica – base pirimidínica c) ribosa – desoxirribosa

aumenta afinidad

(22)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 22

d) unión fosfodiéster – enlace puente de hidrógeno

8. Complete el siguiente cuadro comparativo sobre los ácidos nucleicos

ADN ARN

Estructura (nucleótidos)

Número cadenas que lo forman

Vida media

Ubicación celular

Funciones

Señale la opción correcta:

9. Las proteínas son:

a. polímeros de aminoácidos dispuestos en secuencias lineales. b. polímeros de aminoácidos dispuestos en secuencias ramificadas... c. polímeros ramificados de bajo peso molecular.

d. polímeros ramificados de alto peso molecular.

10. Los aminoácidos esenciales son aquéllos que: a. no pueden ser sintetizados por células humanas. b. deben consumirse en exceso

c. poseen mas de un grupo amino en su estructura d. se encuentran en ciertos vegetales

11. El ADN:

a. está compuesto por 2 cadenas paralelas y complementarias. b. es un polímero ramificado formado por desoxirribonucleótidos c. es el principal componente de los ribosomas.

d. es un polímero no ramificado formado por desoxirribonucleótidos

12. Si la secuencia de un fragmento de hebra de ADN es 5’ TAACCGTTA 3’, la secuencia complementaria será:

a. 3´ ATTGGCAAT 5’ b. 5’ AUUGGCAAU 3 c. 5’ UAACCGUAA 3’ d. 3’ TAACGGTTA 5’

13. Un polinucleótido de una molécula de ADN tiene 100 moléculas de Adenina y 100 de Citosina. Cuántas moléculas de desoxirribosa tiene ese ADN:

(23)

Queda hecho el depósito que marca la ley 11.723. Prohibida su reproducción total o parcial 23

14. En la molécula de colágeno:

a. hay una gran proporción de hidroxilisina

b. cada una de las tres cadenas polipeptídicas presentan giro derecho c. el tropocolágeno establece enlaces puente de hidrógeno intercatenarios d. la glicina se ubica centralmente en la cadena peptídica

15. La hemoglobina, en los tejidos sometidos a una exigencia metabólica: a. libera menos oxígeno y capta más dióxido de carbono

b. libera más oxígeno y capta más dióxido de carbono c. libera menos oxígeno y capta menos dióxido de carbono d. libera más oxígeno y capta menos dióxido de carbono

16. Un polinucleótido mantiene su secuencia mediante uniones: a. fosfodiéster

Referencias

Documento similar

dente: algunas decían que doña Leonor, "con muy grand rescelo e miedo que avía del rey don Pedro que nueva- mente regnaba, e de la reyna doña María, su madre del dicho rey,

Entre nosotros anda un escritor de cosas de filología, paisano de Costa, que no deja de tener ingenio y garbo; pero cuyas obras tienen de todo menos de ciencia, y aun

d) que haya «identidad de órgano» (con identidad de Sala y Sección); e) que haya alteridad, es decir, que las sentencias aportadas sean de persona distinta a la recurrente, e) que

Ciaurriz quien, durante su primer arlo de estancia en Loyola 40 , catalogó sus fondos siguiendo la división previa a la que nos hemos referido; y si esta labor fue de

Las manifestaciones musicales y su organización institucional a lo largo de los siglos XVI al XVIII son aspectos poco conocidos de la cultura alicantina. Analizar el alcance y

La campaña ha consistido en la revisión del etiquetado e instrucciones de uso de todos los ter- mómetros digitales comunicados, así como de la documentación técnica adicional de

Products Management Services (PMS) - Implementation of International Organization for Standardization (ISO) standards for the identification of medicinal products (IDMP) in

This section provides guidance with examples on encoding medicinal product packaging information, together with the relationship between Pack Size, Package Item (container)