Operador = < > Se lee Igual a Distinto a Menor que Menor o igual que Mayor que Mayor o igual que

Descargar (0)

Texto completo

(1)

Bloque I. Números y medidas. Tema 2: Números enteros. TEORÍA 1. NÚMEROS ENTEROS

* El conjunto de los números enteros está formado por el conjunto de los números naturales N = {0, 1, 2, 3, 4, 5...} y los negativos {–1, – 2, –3, –4, –5...}. Se representa con el símbolo Z.

Por tanto Z = {..., –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5...}

* Para representar gráficamente los números enteros se dibuja una recta, y en ella, un punto que es el cero. A su derecha y a igual distancia se representan los números positivos, y a su izquierda, los números negativos.

* El número "a" es menor que el número "b" si, al hacer la representación gráfica, "a" está a la izquierda de "b".

* El valor absoluto de un número "a" es el mismo número prescindiendo del signo y se escribe |a|.

* Los 6 operadores relacionales son:

Operador = < ≤ > ≥

Se lee Igual a Distinto a Menor que Menor o igual que Mayor que Mayor o igual que

Ejemplos:

a) -6 es menor que -4 ya que -6 está a la izquierda de -4 en la recta. Utilizando los operadores relacionales podemos expresarlo de las siguientes formas:

6 4 6 4 4 6 4

6< >

ó ó ó

b) Es evidente que 5= 5 pero 5 5 pero también podemos decir que 5 5 ó 5 5 ya que se cumple la igualdad c) En cuanto al valor absoluto, por ejemplo:

0 0 7 7 7 7 3 3 3

3 = = = = =

ERV 1

2. OPERACIONES CON NÚMEROS ENTEROS 2.1. SUMAYRESTA DE NÚMEROS ENTEROS

* Para sumar (restar) dos números:

- Si tienen el mismo signo, se suman sus valores absolutos y se pone el signo que tenían los sumandos.

- Si tienen distinto signo, se restan los valores absolutos y se pone el signo del que tiene mayor valor absoluto.

* Al suprimir un paréntesis precedido del signo más, los signos interiores no varían.

* Al suprimir un paréntesis precedido del signo menos, se cambian los signos interiores: más por menos y menos por más.

* Para sumar más de dos números positivos y negativos, primero se suman los positivos por un lado y los negativos por otro y después se restan los resultados y se pone el signo del que tiene mayor valor absoluto.

Ejemplos:

3 2 5 3

7 4

: )

9 4 5 8

5 3

: )

= +

+

= +

+

= + +

=

signo diferente Con

b

signo mismo el Con a

(

6 2 1

) (

7 4

)

9 11 2 3 5 6 2 1 4

(

5 2 1

) (

3 6 4

)

8 13 5

1 4 7 2 6

: )

=

= + +

+ +

=

+ +

+

=

= +

+ +

= +

+

números dos

de Más c

(2)

Bloque I. Números y medidas. Tema 2: Números enteros. TEORÍA

2.2. MULTIPLICACIÓNY DIVISIÓN DE NÚMEROS ENTEROS

* La regla de los signos dice que al multiplicar y al dividir dos números, si ambos tienen el mismo signo, el resultado es positivo, y si tienen distinto signo, el resultado es negativo.

* Para hallar el signo del producto o división de varios números enteros, se cuenta el número de signos menos.

Si es par, el resultado es positivo, y si es impar, negativo.

Ejemplos:

( ) ( ) ( ) ( )

(

15

) ( )

: 3 5 :

( ) ( )

5· 2 10

)

2 5 : 10 12

4

· 3

: )

= +

=

+

+

= + +

=

signo diferene el

Con b

signo mismo el Con a

( ) ( ) ( )

)+ 5· 2· 6 = +60 :

(

+ 24

) ( ) ( ) ( )

: 6 : 2 : 1 = 2 números

dos de Más c

2.3. JERARQUÍA DE LAS OPERACIONES YUSODEL PARÉNTESIS

* Recuerda que un signo negativo delante de un paréntesis cambia el signo a todo lo de dentro del paréntesis.

Ejemplos:

( ) ( )

( )

3 5 8 ) 5 ( ) 8 ( )

7 2 9 ) 2 ( ) 9 ( )

0 3 3 ) 3 ( ) 3 ( )

12 5 7 ) 5 ( ) 7 ( )

2 7 5 7 5 )

2 13 15 13 15 )

= +

=

=

= +

+

= +

= + +

=

=

+

=

=

+

= +

= + +

f e d c b a

g)10

[

14

(

5 7+ 1

) ]

= 10

[

14

( )

1

]

= 10

[

14+ 1

]

= 1015= 5

* La jerarquía de las operaciones y uso del paréntesis dice que cuando se tienen distintas operaciones combinadas se debe seguir el orden:

a) Paréntesis.

b) Multiplicaciones y divisiones.

c) Sumas y restas.

d) Si las operaciones tienen el mismo nivel, se comienza por la izquierda.

Ejemplo:

( ) ( )

( ) ( )

4 12 8

12 3 5

2

· 6 4 : 12 5

5 3

· 6 9 5 : 12 5

=

=

+

=

+

=

+

ERV del 2 al 8

(3)

Bloque I. Números y medidas. Tema 2: Números enteros. TEORÍA

2.4. PROPIEDADESDE LAS OPERACIONES CON NÚMEROS ENTEROS

* Propiedad conmutativa de la suma: a+ b= b+ a y del producto ab= ba

* Propiedad asociativa de la suma:

(

a+ b

)

+ c= a+

(

b+ c

)

y del producto

( )

abc= a

( )

bc

* Propiedad distributiva del producto respecto de la suma: a

(

b+ c

)

= ab+ ac

Ejemplo:

( ) ( ) ( ) ( )

( )

16 16

6 10 8

· 2

3

· 2 5

· 2 3 5

· 2

: )

4

· 3

· 2 4

· 3

· 2 7

3 5 7 3 5

: )

5

· 3 3

· 5 5 3 3 5

: )

= +

= +

= +

= +

+

= + +

= +

= +

va Distributi c

Asociativa b

a Conmutativ a

ERV 9

3. PROBLEMAS DE LA VIDA REAL EN LOS QUE UTILIZAMOS NÚMEROS ENTEROS

* Veremos ejercicios en los que es necesario operar con números negativos:

a) Temperaturas: positivas sobre cero y negativas bajo cero.

b) Posiciones positivas sobre el nivel del mar y negativas bajo el nivel del mar.

c) Dinero positivo cuando se tiene y negativo cuando se debe.

d) Años positivos después de Cristo y negativos antes de Cristo.

ERV del 10 al 25

(4)

Bloque I. Números y medidas. Tema 2: Números enteros.

EJERCICIOS RESUELTOS EN VÍDEO EN www.josejaime.com/videosdematematicas EJERCICIOS RESUELTOS EN VÍDEO

1. (1º ESO) a) ¿Cuáles son los números enteros? ¿Por qué son necesarios?

b) Representa gráficamente los siguientes números enteros y ordénalos de menor a mayor: 5, –3, 0, –1, 2 c) ¿Qué tres operadores relacionales diferentes puedes escribir entre los números enteros –3 y 4.

d) Halla todos los números enteros x que verifican la doble desigualdad: − 3< x≤ 5. e) Escribe los cuatro números enteros negativos de menor valor absoluto.

f) Halla y representa todos los números enteros x que verifican x ≤ 3 2. (1º ESO) Calcula:

a) (+12)+ (+3) b) (+12)+ (−3) c) (−12)+ (+3) d) (−12)+ (−3) e) (+12)− (+3) f) (+12)− (−3) g) (−12)− (+3) h) (−12)− (−3) i) − (+12)− (+3) j) − (+12)− (−3) k) − (−12)− (+3) l) − (−12)− (−3) m) (+12)⋅(+3) n) (+12)⋅(−3) ñ) (−12)⋅(+3) o) (−12)⋅(−3) p) (+12):(+3) q) (+12):(−3) r) (−12):(+3) s) (−12):(−3) t) − (+12)⋅(+3) u) − (+12)⋅(−3) v) − (−12)⋅(+3) w) − (−12)⋅(−3) 3. (1º ESO) Calcula:

a) (+12)+ (−3)+ (+2)+ (−4) b) (+12)− (−3)− (+2)+ (−4) c) (+12)

(

(3)(+2)+ (4)

)

d) (210)

(

5(8+ 2)

)

e)

(

1+ (69)

)

(812) f) − 4

(

5

(

3(2)

(

5+ 2

) ) )

4. (1º ESO) Calcula:

a) (+12)⋅(−3)⋅(+6) b) (+12):(+3):(−2) c) − (+12)⋅(−3):(+6) d) (−12):(−3)⋅(−6) e) (12):

(

(2)(6)

)

f)

(

(+3)(12)

) (

: (2)(6)

)

g) (+3)

(

(12):(2)

)

(6)

5. (1º ESO) Calcula:

a) 5+ 20⋅5 b) (5+ 20)⋅5 c) 5+ 20:5 d)

(

5+ 20

)

:5 e) 5+ 20⋅(−5) f) 5+ (−20)⋅(−5) g) 5− 20⋅(−5) 6. (1º ESO) Calcula:

a) 2+ 5⋅3+14:(−2) b) 7− 2⋅(3− 8)+ 24:(−8) c) (7− 2)⋅(3− 8)+ 24:(−8) d)

(

(72)(38)+ 23

)

:2+ 1 e) 4(6+ 512)

(

(47):(1215)

)

f) 230(34+ 45)5

(

243

(

31545

) )

7. (1º ESO) Calcula:

a) 42

(

5

( ) (

23410

)

5+ 3

)

3+ 5 b)

(

42

)

(

5

( )

234105+ 3

) (

: 35113

)

(5)

Bloque I. Números y medidas. Tema 2: Números enteros.

EJERCICIOS RESUELTOS EN VÍDEO EN www.josejaime.com/videosdematematicas

8. (1º ESO) Calcula con wiris y comprueba el resultado de las siguientes operaciones. Plantea tú mismo otros ejercicios similares

9. Calcula con wiris y comprueba el resultado de las siguientes operaciones. Plantea tú mismo otros ejercicios similares

10. a) Comprueba la propiedad asociativa calculando 534 de tres formas diferentes.

b) Comprueba la propiedad distributiva calculando 5

(

6+ 2

)

de dos formas distintas.

c) Comprueba la propiedad distributiva calculando

(

6+ 2

) ( )

⋅ − 2 de dos formas distintas.

11. (1º ESO) La temperatura más alta medida en un congelador ha sido de 4 °C bajo cero y la más baja, de 26 °C

(6)

Bloque I. Números y medidas. Tema 2: Números enteros.

EJERCICIOS RESUELTOS EN VÍDEO EN www.josejaime.com/videosdematematicas 12. (1º ESO) Un avión vuela a 8 000 m de altura. Sube 1 000 m para evitar una tormenta y luego desciende

2 600 m. ¿A qué altura vuela ahora?

13. (1º ESO) En un almacén tuvieron 3 400 € de beneficio en el primer mes, perdieron 837 € en el segundo mes y ganaron 2 800 € en el tercer mes. ¿Tuvieron ganancias o pérdidas durante el trimestre? ¿A cuánto ascendieron?

14. (1º ESO) Hemos comprado 100 acciones de una empresa a un precio de 24 €. Pasados tres meses, el valor de cada acción es de 19 €. ¿A cuánto asciende la pérdida?

15. (1º ESO) ¿Cuántos años transcurrieron desde 234 a. C. a 1967 d. C?

16. (1º ESO) Salí de mi piso y bajé 3 plantas para buscar a mi amigo Juan. Subimos 4 pisos hasta la casa de Inés, que vive en el 9°. ¿En qué piso vivo?

17. (1º ESO) Aristóteles nació en el año 384 a. C. y vivió 64 años. ¿En qué año murió?

18. (1º ESO) Entre un número entero positivo y otro negativo, hay tres números enteros. ¿Cuáles son los números?

Busca todas las soluciones.

19. (1º ESO) Hemos comprado un camión congelador que estaba, al ponerlo en marcha, a 25 °C. Al cabo de 4 horas estaba a –7 °C. ¿Cuántos grados bajó cada hora?

20. (1º ESO) Un termómetro marca 12 °C después de haber subido 7 °C y bajado 3 °C. ¿Cuál era la temperatura inicial?

21. (1º ESO) En la siguiente tabla se indican las temperaturas que se han registrado en algunas ciudades.

Ciudad Praga Ámsterdam Fráncfor

t Madrid Sevilla

ºC –8 –5 0 6 12

a) ¿En qué ciudad hizo más frío?

b) ¿En qué ciudad hizo menos frío?

c) ¿Cuál es la diferencia de temperatura entre esas dos ciudades?

22. Un frutero ha comprado 50 kg de manzanas a 1 €/kg, ha vendido 35 kg a 2 €/kg y el resto se ha estropeado.

¿Cuánto ha ganado?

23. Pitágoras nació el año 585 a.C. y murió el año 495 a.C. ¿Cuántos años vivió?

24. La cotización en bolsa de una empresa está a 34 €. Durante la semana se producen las siguientes variaciones:

–2 €, 1 €, –1 €, 2 €, –1 €. ¿Cuál es la cotización final?

25. En la cuenta corriente del banco tenemos 210 €. Se paga el recibo de la luz, que vale 183 €; el recibo del

teléfono, que vale 37 €, y dos cheques de gasolina de 40 € cada uno. Se ingresan 24 € de beneficios en acciones

¿Cuánto dinero queda en la cuenta corriente?

26. Una plataforma petrolífera tiene 23 m sobre el nivel del mar, y desciende 350 m. Halla la altura de la plataforma.

(7)

Bloque I. Números y medidas. Tema 2: Números enteros.

EJERCICIOS RESUELTOS EN VÍDEO EN www.josejaime.com/videosdematematicas

SOLUCIONES DE LOS EJERCICIOS RESUELTOS EN VÍDEO 1. Ver vídeo

2. Ver vídeo 3. Ver vídeo 4. Ver vídeo 5. Ver vídeo 6. Ver vídeo 7. Ver vídeo 8. Ver vídeo 9. Ver vídeo

10. Ver vídeo 11. Ver vídeo 12. Ver vídeo 13. Ver vídeo 14. Ver vídeo 15. Ver vídeo 16. Ver vídeo 17. Ver vídeo 18. Ver vídeo

19. Ver vídeo 20. Ver vídeo 21. Ver vídeo 22. Ver vídeo 23. Ver vídeo 24. Ver vídeo 25. Ver vídeo

Figure

Actualización...

Referencias