• No se han encontrado resultados

Pila Voltaica

N/A
N/A
Protected

Academic year: 2021

Share "Pila Voltaica"

Copied!
6
0
0

Texto completo

(1)

PILA VOLTAICA

Una pila voltaica aprovecha la electricidad de una reacción química espontánea para encender una bombilla (foco). Las tiras de cinc y cobre, dentro de disoluciones de ácido sulfúrico diluido y sulfato de cobre respectivamente, actúan como electrodos. El puente salino (en este caso cloruro de potasio) permite a los electrones fluir entre las cubetas sin que se mezclen las disoluciones. Cuando el circuito entre los dos sistemas se completa (como se muestra a la derecha), la reacción genera una corriente eléctrica. Obsérvese que el metal de la tira de cinc se consume (oxidación) y la tira desaparece. La tira de cobre crece al reaccionar los electrones con la disolución de sulfato de cobre para producir metal adicional (reducción). Si se sustituye la bombilla por una batería la reacción se invertirá, creando una célula electrolítica.

Pilas voltaicas

En qué consisten:

Una pila voltaica aprovecha la electricidad de una reacción química espontánea para encender un bombillo.

Como se construye:

Para hacer una pila casera se necesitan los siguientes instrumentos:

Se necesita un frasco de cristal de boca ancha, un trozo de tubería de cobre que esté limpia, una tira de zinc o un sacapuntas metálico, dos cables eléctricos, un vaso de vinagre, un LED (diodo emisor de luz), el cual es como un bombillo muy pequeñito, parecido a los que iluminan algunos árboles de navidad, un reloj despertador o cualquier otro aparato que funcione con pilas.

Procedimientos para hacer la pila casera: Se llena el frasco de cristal con vinagre.

Con un extremo de uno de los cables, se conecta el sacapuntas o tira de zinc y con un extremo del otro cable, se conecta la tubería de cobre. Se introducen ambos elementos en el frasco con vinagre.

Los extremos libres de los dos cables se conectan bien a cada Terminal del LED o bien a los dos polos de la porta pilas del aparato. Conectar la polaridad, en el caso del reloj, de forma

correcta. El polo positivo con la tubería de cobre y el negativo al sacapuntas o tira de zinc. Como funcionan:

Las tiras de zinc y cobre, dentro de disoluciones de ácido sulfúrico diluido y sulfato de cobre respectivamente, actúan como electrodos. El puente salino (en este caso cloruro de potasio) permite a los electrones fluir entre las cubetas sin que se mezclen las disoluciones. Cuando el circuito entre los dos sistemas se completa (como se muestra a la derecha), la reacción genera una corriente eléctrica. Obsérvese que el metal de la tira de cinc se consume (oxidación) y la tira desaparece. La tira de cobre crece al reaccionar los electrones con la disolución de sulfato

(2)

de cobre para producir metal adicional (reducción). Si se sustituye la bombilla por una batería la reacción se invertirá, creando una célula electrolítica.

Como se utilizan:

La descomposición electrolítica es la base de un gran número de procesos de extracción y fabricación muy importantes en la industria moderna. La sosa cáustica (un producto químico importante para la fabricación de papel, rayón y película fotográfica) se produce por la

electrólisis de una disolución de sal común en agua. La reacción produce cloro y sodio. El sodio reacciona a su vez con el agua de la pila electrolítica produciendo sosa cáustica. El cloro obtenido se utiliza en la fabricación de pasta de madera y papel.

Una aplicación industrial importante de la electrólisis es el horno eléctrico, que se utiliza para fabricar aluminio, magnesio y sodio. En este horno, se calienta una carga de sales metálicas hasta que se funde y se ioniza. A continuación, se deposita el metal electrolíticamente. Los métodos electrolíticos se utilizan también para refinar el plomo, el estaño, el cobre, el oro y la plata. La ventaja de extraer o refinar metales por procesos electrolíticos es que el metal depositado es de gran pureza. La galvanotecnia, otra aplicación industrial electrolítica, se usa para depositar películas de metales preciosos en metales base. También se utiliza para

depositar metales y aleaciones en piezas metálicas que precisen un recubrimiento resistente y duradero. La electroquímica ha avanzado recientemente desarrollando nuevas técnicas para colocar capas de material sobre los electrodos, aumentando así su eficacia y resistencia. Tras el descubrimiento de ciertos polímeros que conducen la electricidad, es posible fabricar

electrodos de polímeros.

Celdas o pilas voltaicas

Una celda voltaica es un dispositivo para producir energía eléctrica a partir de una reacción redox, la cual origina una corriente eléctrica que puede utilizarse industrialmente.

Una celda voltaica básicamente consta de dos recipientes, cada uno contiene un electrodo metálico distinto al otro sumergido en una solución de un electrolito del mismo metal Zn/ZnSO4, Cu/CuSO4 . Entre los dos electrodos debe darse una diferencia de potencial para que la reacción se lleve a cabo al unir los dos electrodos mediante un conductor. Cuando esto ocurre fluye una corriente de electrones de un electrodo al otro, constituyendo una corriente eléctrica cuyo voltaje puede medirse y utilizarse con fines prácticos.

(3)

La principal característica de la celda voltaica es la pared porosa que separa las dos soluciones evitando que se mezclen. La pared es porosa para que los iones la atraviesen. En una pila en donde uno de los electrodos es de Zn / ZnSO4 y el otro de cobre Cu / CuSO4 el flujo de electrones se realiza en el interior del sistema del Zn al Cu; como el Zn es más activo tiende a ceder electrones para realizar un trabajo eléctrico útil. Para esto los electrones deben circular por el exterior a través de un conductor eléctrico. La hemicelda del ánodo adquiere un exceso de iones de Zn positivos (para mantener la neutralidad eléctrica necesita iones negativos), al mismo tiempo, la hemicelda del cátodo consume iones de Cu (para mantener la neutralidad, éste debe eliminar iones negativos).Los iones SO4 atraviesan la pared porosa para satisfacer la neutralidad eléctrica de ambas hemiceldas.

Una celda voltaica aprovecha la electricidad de la reacción química espontánea para encender una lamparita, es decir, convierte energía potencial química en energía eléctrica (fig. 6).. Las tiras de cinc y cobre, dentro de disoluciones de ácido sulfúrico diluido y sulfato de cobre respectivamente, actúan como electrodos (el derecho actúa como cátodo y el izquierdo como ánodo). El puente salino (en este caso cloruro de potasio) permite a los electrones fluir entre las cubetas sin que se mezclen las disoluciones. Cuando el circuito entre los dos sistemas se completa, la reacción genera una corriente eléctrica.

Si ambas soluciones se conectan mediante un voltímetro su lectura acusará 1,10 V, esto debido a que el potencial de oxidación del Zn++ es 0,763 V y el del Cu++ es de −0,337 V, por lo tanto el cinc (de mayor potencial) le cede electrones al cobre (de menor potencial).

Obsérvese que el metal de la tira de cinc se consume (oxidación) y la tira desaparece. La tira de cobre crece al reaccionar los electrones con la disolución de sulfato de cobre para producir metal adicional (reducción). Si se sustituye la lamparita por una batería la reacción de una se invertirá, creando una celda electrolítica, convirtiendo energía eléctrica en energía potencial química

Un dispositivo en el cual la energía química de la reacción redox se convierte en energía eléctrica es una batería o pila seca.

Los tipos de celdas más comunes son: las pilas y el acumulador de plomo. Otro ejemplo común de batería es la batería de plomo de los automóviles, que consiste en celdas que utilizan un ánodo recubierto con plomo metálico y un cátodo recubierto con oxido de plomo (IV). Los electrodos están sumergidos en una solución electrolítica de ácido sulfúrico.

(4)

Pilas Voltaicas — Presentation Transcript

 1. ALESSANDRO VOLTA Arely Cuevas Francisco Cabanillas Jorge Rascon Fernando Salvat Ricardo Navarro

 2. Nació y fue educado en Como, Lombardía. Recibió una educación básica y media humanista, pero al llegar a la enseñanza superior, optó por una formación científica. En el año 1785 fue nombrado profesor de física de la Escuela Real de Como. Un año después, Volta realizó su primer invento, un aparato relacionado con la electricidad. Con dos discos metálicos separados por un conductor húmedo, pero unidos con un circuito exterior. De esta forma logra por primera vez, producir corriente eléctrica continua, inventando el electróforo perpetuo, un dispositivo que una vez que se encuentra cargado, puede transferir electricidad a otros objetos, y que genera electricidad estática. Entre los años 1786 y 1788, se dedicó a la química, descubriendo y aislando el gas de metano. Un año más tarde, en 1789, fue nombrado profesor titular de la cátedra de física experimental en la Universidad de Pavía.

 3. En 1780, un amigo de Volta, Luigi Galvani, observó que el contacto de dos metales diferentes con el músculo de una rana originaba la aparición de corriente eléctrica. En 1794, a Volta le interesó la idea y comenzó a experimentar con metales únicamente, y llegó a la conclusión de que el tejido muscular animal no era necesario para producir corriente eléctrica. Este hallazgo suscitó una fuerte controversia entre los partidarios de la electricidad animal y los defensores de la electricidad metálica, pero la demostración, realizada en 1800, del

funcionamiento de la primera pila eléctrica certificó la victoria del bando favorable a las tesis de Volta. Alessandro Volta comunicó su descubrimiento de la pila a la Royal Society londinense el 20 de marzo de 1800. La comunicación de Volta fue leída en audiencia el 26 de junio del mismo año, y tras varias reproducciones del invento efectuadas por los miembros de la sociedad, se confirmó el descubrimiento y se le otorgó el crédito de éste.

 4. En septiembre de 1801, Volta viajó a París aceptando una invitación del emperador Napoleón Bonaparte, para exponer las características de su invento en el Instituto de Francia. El propio Bonaparte participó con entusiasmo en las exposiciones. El 2 de noviembre del mismo año, la comisión de científicos distinguidos por la Academia de las Ciencias del Instituto de Francia encargados de evaluar el invento de Volta emitió el informe correspondiente aseverando su validez. Impresionado con la batería de Volta, el emperador lo nombró conde y senador del reino de Lombardía, y le otorgó la más alta distinción de la

institución, la medalla de oro al mérito científico. El emperador de Austria, por su parte, lo designó director de la facultad de filosofía de la Universidad de Padua en 1815. Sus trabajos fueron publicados en cinco volúmenes en el año 1816, en Florencia. Los últimos años de vida los pasó en su hacienda en Camnago, cerca de Como, donde falleció el 5 de marzo de 1827.

 5. HISTORIA DE LA PILA VOLTAICA Alejandro Volta, para estudiar los efectos de la corriente sobre las ancas de rana construyó la pila o columna a la que inicialmente llamó "órgano eléctrico artificial". Volta pensó que lo que el llamó galvanismo era una corriente eléctrica animal. Se le llamó así en honor a Galvani, fundador de la Fisiología nerviosa, que logró crear una

corriente uniendo dos metales diferentes por medio de nervios o de músculos de un animal (que se contraían a su paso).

(5)

 6. HISTORIA DE LA PILA VOLTAICA Para hacer la pila, Volta apiló,

alternándolos, discos de cobre y de zinc de igual tamaño, intercalando entre ellos un trozo de paño húmedo. Esta "pila de discos" empieza y termina con discos de diferente tipo (arriba Cu y abajo Zn). Conectando los discos situados en los extremos por medio de un alambre logró que fluyera un flujo eléctrico por él. Impregnando el trozo de paño intercalado en determinadas sales, la corriente obtenida era mucho mayor.

 7. FUNCIONAMIENTO DE LA PILA VOLTAICA. Aunque la apariencia de cada una de estas celdas sea simple, la explicación de su funcionamiento dista de serlo y motivó una gran actividad científica en los siglos XIX y XX, así como diversas teorías. Las pilas básicamente son dos electrodos metálicos sumergidos en un líquido, sólido o pasta que se llama electrolito. El electrólito es un

conductor de iones. Cuando los electrodos reaccionan con el electrolito, en uno de los electrodos (el ánodo) se producen electrones (oxidación), y en el otro (cátodo) se produce un defecto de electrones (reducción). Cuando los electrones sobrantes del ánodo pasan al cátodo a través de un conductor externo a la pila se produce una corriente eléctrica. Como vemos, en el fondo de trata de una

reacción de oxidación y otra de reducción que se producen simultáneamente.  8. DIAGRAMA DE FUNCIONAMIENTO.

 9. VOLTAJE El voltaje, tensión o diferencia de potencial que produce un elemento electroquímico viene determinado completamente por la naturaleza de las sustancias de los electrodos y del electrolito, así como por su concentración. Walther Nernst obtuvo el premio Nobel de química de 1920 por haber

formulado cuantitativamente y demostrado las leyes que rigen este fenómeno. La conexión de elementos en serie permite multiplicar esta tensión básica cuanto se quiera. Las propiedades puramente eléctricas de una pila se representan mediante el modelo adjunto. En su forma más sencilla está formado por una fuente de tensión perfecta es decir, con resistencia interna nula en serie con un resistor que representa la resistencia interna. El condensador de la versión más compleja es enormemente grande y su carga simula la descarga de la pila. Además de ello entre los terminales también aparece una capacitancia, que no suele tener importancia en las aplicaciones de corriente continua.

 10. Las pilas y el ambiente. Pilas eléctricas usadas en descomposición. Los metales y productos químicos constituyentes de las pilas pueden resultar perjudiciales para el medio ambiente, produciendo contaminación química. Es muy importante no tirarlas a la basura (en algunos países no está permitido), sino llevarlas a centros de reciclado. En algunos países, la mayoría de los proveedores y tiendas especializadas también se hacen cargo de las pilas gastadas. Una vez que la envoltura metálica que recubre las pilas se daña, las sustancias químicas que contienen se ven liberadas al medio ambiente causando contaminación. Con mayor o menor grado, las sustancias son absorbidas por la tierra pudiéndose filtrar hacia los mantos acuíferos y de éstos pueden pasar directamente a los seres vivos, entrando con esto en la cadena alimenticia. Estudios especializados indican que una micro pila de mercurio, puede llegar a contaminar 600.000 litros de agua, una de zinc-aire 12.000 litros y una de óxido de plata 14.000 litros. Las pilas son residuos peligrosos por lo que desde el momento en que se empiezan a reunir, deben ser manejadas por personal capacitado que siga las precauciones adecuadas empleando todos los procedimientos técnicos y legales del manejo de residuos peligrosos.

(6)

 11. DIFERENCIAS La pila voltaica o pila primaria es un tipo de pila electroquímica en la que se aprovecha el flujo de electrones desde un ánodo formado por una sustancia reductora (que se oxida), hacia el cátodo formado por una sustancia oxidante (que se reduce), para producir electricidad

 12. Pila Alcalina La celda o pila se fabrica en dos formas. En una, el ánodo consta de una tira de zinc corrugada devanada en espiral de 0.051 a 0.13 mm de espesor que se amalgama después de armarla. Hay dos tiras de papel absorbente resistente a los álcalis interdevanadas con la tira de papel de zinc, de modo que el zinc sobresalga por la parte superior y el papel por la parte inferior. El ánodo está aislado de la caja metálica con un manguito de poliestireno. La parte superior de la pila es de cobre y hace contacto con la tira de zinc para formar la terminal negativa de la pila. La pila está sellada con un ojillo o anillo aislante hecho de neopreno. La envoltura de la pila es químicamente inerte a los ingredientes y forma el electrodo positivo .

Referencias

Documento similar

La línea eléctrica objeto del presente estudio está dimensionada para la tensión nominal de 66 kV, por lo que queda clasificada en el grupo de segunda categoría, de acuerdo con el

Su energía de activación aparente se reduce al aumentar la dosis de carragenina y, como consecuencia de su proceso de adsorción química sobre la superficie del acero,

Este trabajo se plantea como un proyecto global que involucra la modelización energética de una vivienda unifamiliar mediante el uso de una herramienta software oficial, el cálculo

• Establecer el potencial de producción de energía eléctrica para el autoabastecimiento de la planta depuradora.

Dichas celdas convierten la energía química en eléctrica, mediante un proceso reversible o irreversible, según el tipo de batería, que una vez completo, agota su

Aún con los aceptables costos de la energía renovable, Rondas 1, 1.5 y 2, cuando se hace el mix con las otras fuentes y se incluyen los contratos de compra a largo plazo 1.1),

Productores: Organismos que utilizan la energía solar (plantas verdes) o energía química (algunas bacterias) para fabricar compuestos orgánicos a partir de inorgánicos. Red

Se confirma la necesidad urgente de considerar en las industrias química de transformación y de energía, las perspectivas, aportaciones y principios tecnológicos de