• No se han encontrado resultados

Selección estratégica de activos bajo no-normalidad - análisis del rendimiento de un portafolio de inversión

N/A
N/A
Protected

Academic year: 2020

Share "Selección estratégica de activos bajo no-normalidad - análisis del rendimiento de un portafolio de inversión"

Copied!
53
0
0

Texto completo

(1)

Página 1 de 53 Selección Estratégica de Activos bajo No-Normalidad: Análisis del Rendimiento de un

Portafolio de Inversión1

Presentado por: Orlando Alberto Camacho Reina (Código: 200521723)2

Asesor: Carlos Alberto Álvarez Guevara, CFA3

Versión para entrega final. Abril de 2013

Programa de Economía para Graduados (PEG), Facultad de Economía, Universidad de los Andes, Bogotá, Colombia

Resumen

Contrario al supuesto de normalidad de los retornos de los activos en el esquema tradicional de la teoría de portafolios, la evidencia empírica sugiere que el comportamiento de los retornos está caracterizado por momentos estadísticos de orden superior, como asimetría y “colas pesadas”. Para un inversionista, esto implica que estimaciones convencionales de riesgo subestiman la frecuencia y magnitud de eventos extremos. Este trabajo incorpora la no-normalidad de los retornos en un esquema de optimización de media-CVaR mediante el

uso de distribuciones univariadas -estables y copulas- para representar la dependencia

entre los activos.

Los resultados sugieren que las asignaciones óptimas, el riesgo, el nivel de diversificación y el desempeño de un portafolio son significativamente diferentes a aquellos que resultarían

del esquema tradicional propuesto por Markowitz (1952). Además, la volatilidad de las

asignaciones óptimas es menor cuando se emplea el modelo de media-CVaR con

distribuciones -estables. Emplear esta metodología hubiera permitido disminuir la

probabilidad de afrontar pérdidas extremas en la reciente crisis financiera. Sin embargo, durante la débil recuperación económica posterior a la crisis, el desempeño acumulado del portafolio establecido mediante esta metodología no siempre es mejor que el que se hubiera realizado con el portafolio obtenido bajo el esquema de Markowitz.

Palabras clave: optimización de portafolios, distribuciones -estables, valor en riesgo condicional (CVaR).

JEL: C53, C61, G11

1 Trabajo de grado presentado para obtener el título de Magister en Economía – PEG (Programa de Economía para Graduados) de la Universidad de los Andes.

2 Economista e Ingeniero Industrial de la Universidad de los Andes. Estudiante candidato al título de Magister en Economía de la misma institución. Correo electrónico: oa.camacho62@uniandes.edu.co

(2)

Página 2 de 53

I. Introducción

La selección estratégica de activos (SAA, por sus siglas en inglés) es el proceso de

decisión a través del cual se determinan las asignaciones de cada una de las clases de

activos de un portafolio de inversión. De forma simplificada, este proceso tiene como

insumos las expectativas de largo plazo de los inversionistas sobre el retorno de cada una

de las clases de activos y los objetivos de riesgo-retorno del inversionista. Con base en este

conjunto de información, se realiza un proceso de optimización y/o simulación, que arroja

como resultado un grupo de ponderaciones que representan las asignaciones óptimas a cada

una de las clases de activos que componen el portafolio de inversión (Sharpe, Chen, Pinto,

& McLeavey, 2007).

Dentro del proceso de inversión, la SAA es reconocida como la decisión más

importante que un inversionista puede tomar. Brinson, Singer, & Beebower (1991) y

Brinson, Hood, & Beebower (1986) encontraron que cerca del 90% de la variabilidad a través del tiempo de los retornos de un portafolio son el resultado de la SAA.

Posteriormente, Ibbotson & Kaplan (2000), reportaron que la SAA explica el 100% del

nivel del retorno, el 40% de la variabilidad de los retornos a través de portafolios y el 90%

de la variabilidad de los retornos de un portafolio a lo largo del tiempo. Por tanto, la

adecuada caracterización de la distribución de los retornos de cada una de las clases de

activos y su óptima asignación dentro de un portafolio de inversión es esencial para

determinar el riesgo futuro de un portafolio de inversión.

La solución más conocida al problema de optimización de portafolios fue propuesta

por Markowitz (1952). Ésta consiste en evaluar el retorno y riesgo esperado de un conjunto de oportunidades de inversión. En particular, la solución de Markowitz permite construir un

conjunto de portafolios óptimos, en el sentido que un inversionista no puede obtener un

retorno esperado mayor para cada uno de estos sin aumentar el riesgo de los portafolios

(i.e., se construye una frontera eficiente). En este enfoque tradicional, la solución al

problema del inversionista se puede reconciliar con la maximización de la utilidad esperada

siempre y cuando los retornos sigan una distribución normal o las preferencias del

inversionista sean cuadráticas (Bradley & Taqqu, 2003; Zhu, 2010). Sin embargo, la

(3)

Página 3 de 53 caracterizado por momentos estadísticos de orden superior, como asimetría y curtosis (ver,

por ejemplo, Sheikh & Qiao, 2010).

Los esfuerzos en la última década por encontrar nuevas técnicas que superen las

limitaciones del enfoque tradicional de Markowitz (1952), en particular el supuesto de

normalidad, son el resultado de la gran volatilidad que han enfrentado los mercados

internacionales, y de la necesidad que esto supone para los inversionistas de hacer una

mejor gestión del riesgo que enfrentan sus portafolios de inversión (Xiong & Idzorek,

2011). Dicha necesidad es particularmente relevante para inversionistas institucionales que tienen bajo su administración recursos públicos y por lo cual tienden a ser más adversos al

riesgo que un inversionista privado (León & Vela, 2011).

El principal objetivo de este trabajo es estudiar el efecto de incorporar momentos

estadísticos de orden superior, como asimetría y curtosis, en la SAA. El aporte de este

trabajo es usar datos de alta frecuencia (i.e., retornos diarios) para analizar fuera de muestra

y comparativamente el desempeño relativo de un portafolio construido con modelos

estadísticos que incorporan los aspectos de no-normalidad de los retornos de los activos

respecto a un portafolio construido bajo el enfoque tradicional de media-varianza. Para

incorporar la no-normalidad de los retornos se emplean distribuciones -estables

univariadas y las dependencias entre los activos se modelan a través de copulas- . Se usa el

valor en riesgo condicional (CVaR, por sus siglas en inglés) como la medida de riesgo a

minimizar. El CVaR es el promedio ponderado de las pérdidas que exceden el valor en

riesgo (VaR, por sus siglas en inglés) dado un nivel de confianza predeterminado.

El resto del documento está organizado de la siguiente forma. En la sección II se

presenta una revisión de la literatura. Luego, en la sección III se describen las metodologías

empleadas para resolver el problema de SAA. La sección IV describe los datos y muestra

algunos hechos estilizados de las distribuciones de los retornos. Posteriormente, la sección

(4)

Página 4 de 53

II. Selección estratégica de activos, no-normalidad de retornos y su impacto en el

riesgo de pérdidas de un portafolio

Contrario al supuesto tradicional de la teoría de portafolios moderna (MPT, por sus

siglas en inglés) donde se establece que el retorno de los activos sigue una distribución

normal, totalmente caracterizada por la media de los retornos y la desviación estándar de

estos, la literatura empírica ha rechazado la hipótesis de normalidad (Sheikh & Qiao, 2010).

Según Stoyanov, Rachev, & Fabozzi (2011) las investigaciones realizadas desde

1950 han demostrado que los retornos de los activos tienen características que no se ajustan

a una distribución normal. Estos presentan discontinuidades (Bekaert, Erb, Harvey, &

Viskanta, 1998; Ranjan & Uppal, 2004), correlaciones no constantes que tienden a

aumentar durante periodos adversos (Sheikh & Qiao, 2010; Ranjan & Uppal, 2004; Longin

& Solnik, 2001), asimetrías y una mayor curtosis a aquella de una distribución normal

(Sheikh & Qiao, 2010; Longin, 2005; Xiong, 2010). Por ende, la evidencia rechaza el uso de la distribución normal y afirma la importancia de tener en cuenta la forma precisa de la

distribución de los retornos, y en particular las colas de las distribuciones, para describir

adecuadamente el riesgo asociado a una estrategia de selección de activos (Lucas &

Klaassen, 1998; Rasmussen, 2003). En respuesta a esta evidencia varias metodologías alternativas han sido propuestas con el objetivo de incorporar no-normalidades dentro de la

SAA.

Un primer conjunto de estudios, con los que este trabajo se relaciona, busca modelar

explícitamente la relación entre los saltos observados en los retornos y su efecto en la SAA.

Ranjan & Uppal (2004), evalúa el efecto del riesgo sistémico en los mercados accionarios sobre la selección de portafolios caracterizando los retornos mediante un proceso de

difusión con saltos, donde hay eventos extremos perfectamente correlacionados entre

mercados, pero de magnitudes distintas en cada uno de estos. Sus resultados sugieren que el

riesgo sistémico reduce los beneficios de mantener portafolios diversificados y perjudica a

inversionistas que mantienen posiciones apalancadas. Por su parte, Liu, Longstaff, & Pan,

(2003), modela los retornos en el mercado accionario con un proceso de difusión de saltos dobles para analizar el efecto de saltos tanto en los precios como en la volatilidad de estos

(5)

Página 5 de 53 comportamiento de los inversionistas difiere sustancialmente del propuesto por el modelo

clásico de Markowitz (1952). A diferencia de estos estudios, este trabajo no pretende

modelar explícitamente el proceso generador de saltos en precios o volatilidades, ni

tampoco estudia el problema de selección de activos en un enfoque dinámico. El interés de

este trabajo es estudiar el problema estático de la SAA y cómo cambia la solución a éste a

lo largo del tiempo cuando se incorporan los momentos estadísticos de orden superior para

describir la distribución de los retornos de los activos.

Según Stoyanov, Rachev, & Fabozzi (2011) tres enfoques se han empleado para

modelar las colas de las distribuciones y de esta forma incorporar la no-normalidad de los

retornos al problema de selección de portafolios. El primero de estos es un enfoque

no-paramétrico que extiende el análisis de media-varianza para incorporar las medidas

estadísticas de asimetría y curtosis. Dentro de este enfoque Martellini & Ziemann (2010),

proponen extender el análisis de covarianza para incluir estimadores óptimos de

co-asimetría y co-curtosis. La principal desventaja de este enfoque es el aumento en la

dimensionalidad del problema que conlleva un mayor error de estimación. Sin embargo, los

resultados de estos autores sugieren en ejercicios fuera de muestra la única forma en que

incluir características de no-normalidad de los retornos es superior al enfoque tradicional,

es cuando se tiene en cuenta estimadores mejorados.

Un segundo enfoque para modelar las características de no-normalidad de los

retornos es usar la teoría de valor extremo (EVT, por sus siglas en inglés). Sheikh & Qiao

(2010), proponen usar simulaciones de Monte Carlo para estimar el CVaR de los portafolios e incorpora la no-normalidad de los retornos mediante la modelación de las

colas de las distribuciones mediante la EVT. Sus resultados sugieren que al no incorporar

aspectos no-normales de la distribución de los retornos, los inversionistas subestiman el

riesgo al que se exponen al tomar sus decisiones de inversión y el resultado es portafolios

menos diversificados. Por su parte, Wang, Sullivan, & Ge (2012) usan la EVT dentro de un

modelo dinámico de selección de portafolios y encuentran que el uso de datos de alta

frecuencia y el continuo monitoreo de los mercados permite a un inversionista mejorar el

(6)

Página 6 de 53 Este trabajo puede clasificarse dentro del tercer enfoque de modelación de las

características de no-normalidad de los retornos. En éste la idea es usar distribuciones

diferentes a la normal para representar toda la distribución de los retornos, a diferencia de la

EVT que sólo busca modelar las colas de éstas. Xiong & Idzorek (2011) proponen modelar

los retornos de activos mediante una distribución multivariada truncada de Lévy en un

esquema de optimización de media-CVaR. Sus resultados sugieren, que la asignación

óptima de activos usando su metodología difiere sustancialmente de la que se encontraría

en base al esquema de media-varianza y que ésta hubiera sido beneficiosa durante la crisis

financiera de 2008. Por su parte, Rasmussen (2003) propone modelar la distribución de

cada una de las clases de activos de forma individual (i.e., distribuciones univariadas) e

incorporar la relación entre los activos mediante simulaciones Monte Carlo cuasi-aleatorias,

donde se tenga en cuenta la correlación entre los activos. Él encuentra que los resultados de

esta metodología son más robustos que los de la metodología de Markowitz, permitiendo a

un inversionista incorporar características de no-normalidad y obtener un mayor desempeño

en su portafolio de inversión.

Contrario a Xiong & Idzorek (2011), en este documento se usan datos diarios, no se

estima un distribución multivariada de Lévy, porque ésta no permite diferencias las

características de no-normalidad de los diferentes activos, y se realiza un ejercicio fuera de

muestra a partir del 2008 para analizar sí después de la crisis un esquema de optimización

de media-CVaR sigue siendo beneficioso en términos del desempeño de un portafolio.

Similar al trabajo de Rasmussen (2003), se opta por usar distribuciones univariadas (en este

caso, -estables), pero a diferencia de este las dependencias entre activos se modelan

mediante copulas y no correlaciones.

Otros trabajos han usado otras técnicas de optimización o diferentes métricas de

riesgo para capturar características de no-normalidad de los retornos en el problema de

selección de portafolios. Por ejemplo, Adler & Kritzman (2007) proponen usar un

algoritmo de búsqueda, conocido como “Full-Scale Optimisation”, que no asume ninguna

distribución para los retornos de los activos y tiene la ventaja de no tener error de

aproximación. Sin embargo, los resultados en un ejercicio fuera de muestra no difieren de

(7)

Página 7 de 53

Dentro de la literatura colombiana, otra propuesta es presentada en Reveiz & León

(2008), quienes usan la máxima caída, como la métrica de riesgo, y solucionan el problema no en el espacio de media-varianza sino en el espacio de riqueza terminal-pérdida máxima.

Sus resultados sugieren que para inversionistas de largo plazo, como fondos de pensiones,

la alternativa propuesta es más beneficiosa pues se enfoca en la creación de riqueza en el

largo plazo. A diferencia de estos autores, las métricas de retorno y riesgo empleadas en

este trabajo son diferentes (retorno esperado y CVaR). Sin embargo, el uso del CVaR

también busca reducir el riesgo de pérdidas extremas en un portafolio al incluir

características de no-normalidad, similar al objetivo de Reveiz & León (2008) al usar la

máxima caída como su métrica de riesgo.

Berggrun & Recio (2010) estudian el desempeño de los fondos pensionales

colombianos y analizan la metodología de optimización de Reveiz & León (2008) respecto

a la de Markowitz para determinar si la escogencia de alguna de estas metodologías mejora

el desempeño de un portafolio en un periodo de evaluación. Los resultados de estos autores

sugieren que no hay mejoras en el desempeño de los fondos de pensiones al emplear alguna

de estas dos metodologías. Por último, Silva (2004) estudia el comportamiento del VaR de

un portafolio de títulos de deuda pública doméstica emitidos por el gobierno colombiano.

Sus resultados sugieren que el riesgo de este portafolio, medido a través del VaR, es menor

cuando se emplea un modelo de optimización de CVaR. A diferencia de este último

estudio, este trabajo no se centra únicamente en analizar el VaR de un portafolio y además

incluye un conjunto más amplio de activos financieros dentro del análisis.

III. Marco teórico para la selección estratégica de activos

Se utiliza el esquema de optimización de Markowitz para contrastar las asignaciones

óptimas de portafolios obtenidas según el esquema de optimización de media-CVaR. Esta

sección describe ambas metodologías, introduce la distribución -estable usada para

incorporar retornos no-normales al problema de selección estratégica de activos y describe

(8)

Página 8 de 53

a. Markowitz: Optimización de media-varianza

El trabajo de Markowitz (1952) establece como un inversionista puede escoger

portafolios óptimos usando una combinación del retorno y la volatilidad esperada de un

portafolio. En particular, la solución de Markowitz permite construir un conjunto de

portafolios óptimos, en el sentido que un inversionista no puede obtener un retorno

esperado mayor para cada uno de estos sin aumentar el riesgo de los portafolios (i.e., se

construye una frontera eficiente). El problema de optimización es de la siguiente forma4:

( ) ( ) [ ]

Sujeto a las siguientes restricciones:

[ ] ( ) [ ]

( ) [ ]

Donde ( ) es el vector de asignaciones para los activos.

representa el vector de retornos esperados de los activos y es la matriz de

varianza-covarianza de los activos. Por su parte, [ ] y son el retorno esperado del portafolio y

la varianza de éste, respectivamente.

La solución al problema de optimización de Markowitz tiene la ventaja de

maximizar la utilidad esperada de un inversionista si se satisfacen las siguientes

condiciones: (1) los retornos de los activos siguen una distribución normal y (2) la función

de utilidad de los inversionistas es cuadrática o exponencial (Zhu, 2010). Por tanto, cuando

los retornos de los activos no son normales la solución al problema de Markowitz es

sub-óptima. Esto ocurre porque el inversionista construye su portafolio de inversión sin conocer

la correcta distribución de los activos y por ende la solución de Markowitz deja de ser

eficiente (Rachev, Martin, Racheva, & Stoyanov, 2009).

4 El superíndice se usa para identificar el problema de optimización de Markowitz (1952). Para la metodología de optimización de media-CVaR de Rockafellar & Uryasev (2000) se usa el superíndice .

(9)

Página 9 de 53

b. Distribuciones -estables

Para incorporar la no-normalidad de los retornos de los activos se propone el uso de

la familia de distribuciones -estables. Este tipo de distribuciones se remontan al trabajo de

Paul Lévy en 1920 y fueron propuestas en 1963 por Mendelbrot como una alternativa para

modelar la distribución de los precios de activos financieros (Stoyanov, Rachev, & Fabozzi,

2011). Las características que hacen de la distribución -estable una alternativa atractiva para modelar retornos son que se ajusta mejor a la distribución empírica de los datos

financieros, permite modelar asimetrías y eventos extremos, además satisfacen las

propiedades de estabilidad e invariancia y remplaza a la distribución normal en lo que se

conoce como la generalización del teorema central del límite (Tokat, Rachev, & Schwartz,

2003; Frain, 2009; Rachev & Mittnik, 2000; Rachev, Martin, Racheva, & Stoyanov, 2009).

Una variable aleatoria ( ) sigue una distribución estable, siendo la

función de densidad de probabilidad, si tiene la siguiente función característica

(Kabasinskas, Rachev, Sakalauskas, Sun, & Belovas, 2009):

( ) {

{ | | ( ( ) ( )) }

{ | | ( ( ) ( ) ) } [ ]

Por tanto la distribución estable está determinada por los siguientes 4 parámetros

(Tokat, Rachev, & Schwartz, 2003):

 ( ] determina la curtosis de la distribución y se conoce como el índice de

estabilidad.

 [ ] representa la asimetría de la distribución.  [ ) es un parámetro de escala.

 es un parámetro de localización ( es la media si ( ])

Entre menor sea el índice de estabilidad, la distribución tiene mayor leptocurtosis.

Por su parte, cuando la distribución tiene asimetría positiva. Cuando la

(10)

Página 10 de 53

sólo cuando el primer momento de la distribución ( ) es finito y se puede hablar de

retornos esperados (Tokat, Rachev, & Schwartz, 2003).

Frain (2009), enumera las dificultades de trabajar con la distribución -estable. En primer lugar, la varianza de este tipo de distribuciones sólo es finita para un caso particular:

la distribución normal. En segundo lugar, la función de densidad de probabilidad sólo tiene

una expresión analítica cerrada para 3 casos particulares (Nolan, 2003): la distribución

normal ( ), la distribución de Cauchy ( ) y la distribución de Lévy ( ).

Para los demás casos la función de densidad debe estimarse usando métodos numéricos.

De acuerdo a Xiong (2010) y Xiong & Idzorek (2011) la distribución estable se

puede truncar para lograr que la varianza sea finita. En particular, Xiong (2010) usa la

distribución truncada para estimar el riesgo de pérdida (CVaR), para diferentes activos y

encuentra que este modelo se ajusta apropiadamente a la distribución histórica de los

retornos. En este trabajo se usan datos diarios para la estimación del CVaR y las

distribuciones de los retornos simulados se truncan usando 9.5 desviaciones estándar, en

base al trabajo desarrollado por Xiong (2010).

Para la estimación de las distribuciones -estable se usaron las funciones

desarrolladas por Veillette (2009)5. El método de estimación empleado en estas funciones

es el desarrollado por Koutrouvelis (1980). Los cuatro parámetros de la distribución

-estable se obtienen mediante un modelo de regresión en dos etapas. En la primera etapa se

estiman los parámetros y . Posteriormente, se estiman los parámetros de localización y

asimetría de la distribución. El Anexo 1 presenta de forma detallada el proceso de

estimación empleado para obtener los cuatro parámetros de la distribución -estable para

cada uno de los activos y los parámetros obtenidos. Las distribuciones estimadas son

empleadas para simular los retornos esperados para cada uno de los activos.

c.

Copulas-Según Sheikh & Qiao (2010), una copula es una función que permite modelar la

distribución conjunta de los retornos de los activos de forma separada a la distribución

5

Las funciones pueden ser descargadas gratuitamente a través del link: http://math.bu.edu/people/mveillet/research.html

(11)

Página 11 de 53 marginal de cada uno de estos. La idea es que para distribuciones multivariadas, las

distribuciones marginales y la estructura de dependencia entre las variables pueden

separarse, para ser posteriormente representadas mediante una copula.

Formalmente, una copula -dimensional es una función que satisface las

siguientes propiedades (Bouyé, Durrleman, Nikeghbali, Riboulet, & Roncalli, 2000):

 El dominio de [ ] ,

 es -creciente, y

 tiene distribuciones marginales que satisfacen ( ) ( ) .

Una ventaja de usar copulas en la modelación de los retornos de los activos es que

éstas permiten diferenciar las relaciones entre activos en tiempos de crisis, de aquellas que

se observarían en tiempos “normales” de los mercados. Además, a través de copulas

también se pueden modelar acertadamente las relaciones entre retornos negativos de

diferentes activos y a diferencia de una correlación simple, una copula no asume que las

relaciones entre activos sean lineales (Bouyé, Durrleman, Nikeghbali, Riboulet, & Roncalli,

2000; Sheikh & Qiao, 2010).

Siguiendo el trabajo de Sheikh & Qiao (2010), se usan copulas- para representar

las dependencias entre activos porque de esta forma se captura el efecto de convergencia de

correlaciones. Siendo una matriz simétrica definida positiva y la distribución

estándar multivariada de Student (con grados de libertad y matriz de correlación ), una

copula- se puede definir de la siguiente forma (Bouyé, Durrleman, Nikeghbali, Riboulet,

& Roncalli, 2000):

( ) ( ( ) ( ) ( )) [ ]

Donde es la inversa de una distribución .

d. Rockafellar & Uryasev: Optimización de media-CVaR

Rockafellar & Uryasev (2000) proponen minimizar el valor en riesgo condicional para un nivel dado de retorno, permitiendo incorporar retornos no-normales al problema de

(12)

Página 12 de 53

( ) ( ) ( ) ( ) [ ]

Donde es el nivel de confianza, ( ) es la función de pérdida y ( ) es la función de

densidad de probabilidad de los retornos . El valor en riesgo condicional es el promedio

ponderado de las pérdidas superiores al valor en riesgo dado un nivel de confianza

predeterminado.

En este caso sea ( ) el vector de asignaciones que representa el

portafolio de inversión, tal que cada es el porcentaje invertido en el activo . La

restricción del problema de optimización es las siguientes:

( ) [ ]

Donde [ ] establece que no hay posiciones cortas en el portafolio y todo el capital

disponible se emplea para construir el portafolio de inversión. Ahora, sea el retorno del

activo , de modo que representa la distribución conjunta de los retornos. Nótese que

no debe seguir una distribución particular, por lo cual es en este punto donde se incorpora

la no-normalidad de los retornos de los activos mediante la distribución -estable. La

pérdida del portafolio de inversión se puede representar de la siguiente forma:

( ) [ ] ( ) [ ]

Sin pérdida de generalidad, Rockafellar & Uryasev (2000) introducen el requisito

que sólo portafolios que tengan un retorno esperado al menos de pueden ser admitidos.

Es decir, se introduce la siguiente restricción lineal al problema de optimización:

( ) [ ]

Donde ( ) representa la media de la pérdida asociada al portafolio . Por tanto,

es el conjunto que representa a los portafolios factibles y está determinado por las

restricciones [ ] y [ ]. Puesto que estas restricciones son lineales, es un poliedro y por

(13)

Página 13 de 53

optimización6. Rockafellar & Uryasev (2000), demostraron que el problema de minimizar

el CVaR de un portafolio es equivalente a minimizar la siguiente función objetivo7:

( )

( ) ∫ [ ( ) ] ( )

[ ]

Donde es el nivel de confianza, es el VaR del portafolio. Como señalan

Rockafellar & Uryasev (2000), no es necesario tener una expresión analítica cerrada de ( ) para implementar la metodología de media-CVaR. En este caso, dado que la distribución

-estable no tiene una expresión analítica cerrada, se realiza un ejercicio de simulación para

obtener muestras aleatorias de ( ) y de esta forma aproximar la minimización del CVaR a

través de la minimización de la siguiente función objetivo:

̃ ( )

( )∑ [ ( ) ]

[ ]

Donde es el número de simulaciones, ( ) es el vector de

retornos de la simulación y [ ] mientras . El problema de optimización se

resuelve minimizando de forma conjunta con respecto a y . Por tanto, el esquema de

optimización de Rockafellar & Uryasev (2000) permite minimizar el CVaR de un

portafolio y calcular el VaR de éste de forma simultánea.

IV. Datos

Los datos usados consisten en retornos diarios a partir de enero 1 de 1998 hasta

diciembre 31 de 2012. 7 de los 8 activos incluidos en el análisis están representado por un

índice de la siguiente forma: bonos de gobiernos del G7 mediante el índice WG07 de BofA

Merrill Lynch (ML), bonos globales atados a inflación a través del índice W0GI de ML,

bonos globales de cuasi-gobiernos mediante el índice G0BQ de ML, bonos globales

6

La función objetivo no es lineal, sin embargo mediante la inclusión de variables auxiliares el problema de optimización puede expresarse en su versión lineal restringida. Para la implementación del programa de optimización se usó Matlab R2012b que cuenta con un módulo para resolver el problema de optimización de media-CVaR. Este módulo no transforma el problema de optimización a su versión lineal (The MathWorks, Inc., 2012).

(14)

Página 14 de 53

corporativos representados por el índice G0BC de ML, hipotecas emitidas por agencias

estadounidenses a través del índice M0A0 de ML y acciones globales de alta y baja

capitalización mediante los índices STPMWDU y STEMWDU de Standard and Poor’s,

respectivamente. El oro (GOLD) es el octavo activo incluido (en el Anexo 2 se presentan

más detalles sobre los índices empleados para representar cada activo).

El Cuadro 1 presenta estadísticas descriptivas de los retornos de los 8 activos

incluidos en el análisis para la muestra completa (en el Anexo 3 se presenta una

desagregación por año). Los retornos8 diarios están definidos como ( ⁄ )

donde es el valor del índice en el día . Se resalta el hecho que todos los activos tienen

una curtosis mayor a 3 lo cual sugiere que los retornos no siguen una distribución normal.

Además, a excepción del oro, los activos tienen una asimetría diferente de cero y los

activos más volátiles son las acciones y el oro.

Cuadro 1: Estadísticas descriptivas de los retornos diarios, Enero 1 de 1998 – Diciembre 31 de 2012

Índice W0G7 W0GI G0BQ G0BC M0A0 STEMWDU STPMWDU GOLD

Promedio 0.017% 0.026% 0.020% 0.021% 0.022% 0.028% 0.019% 0.045% Desviación Estándar 0.173% 0.265% 0.163% 0.208% 0.198% 1.094% 1.095% 1.128% Media 0.022% 0.029% 0.025% 0.032% 0.021% 0.098% 0.073% 0.047% Min -0.908% -1.906% -0.820% -1.352% -1.069% -7.463% -7.219% -7.240% Max 0.940% 1.850% 0.788% 0.969% 1.757% 7.334% 9.083% 10.245% 1% -0.430% -0.744% -0.410% -0.551% -0.562% -3.170% -3.197% -3.146% 5% -0.274% -0.408% -0.256% -0.328% -0.280% -1.724% -1.696% -1.747% 10% -0.195% -0.273% -0.180% -0.232% -0.196% -1.187% -1.191% -1.214% 90% 0.225% 0.327% 0.212% 0.260% 0.240% 1.176% 1.135% 1.296% 95% 0.294% 0.440% 0.270% 0.343% 0.319% 1.591% 1.625% 1.784% 99% 0.424% 0.721% 0.407% 0.507% 0.581% 2.837% 2.844% 2.851% Asimetría -0.181 -0.235 -0.213 -0.421 0.203 -0.520 -0.299 0.063 Curtosis 4.448 6.582 4.670 5.072 8.436 8.046 9.342 9.218

Observaciones 3869 3869 3869 3869 3869 3869 3869 3869

* Retornos no anualizados

** Fuente: Datos obtenidos a través de Bloomberg. Cálculos del autor.

Para investigar el ajuste de los datos a la distribución normal en el Gráfico 1 y

Gráfico 2 se presentan las gráficas de probabilidad y los histogramas de los activos,

8

Los retornos usados son retornos totales. Por tanto, se incluyen intereses, ganancias de capital y dividendos durante el periodo de análisis.

(15)

Página 15 de 53 respectivamente. El Gráfico 1 sugiere que la distribución observada de todos los activos

difiere de la distribución normal, en particular en las colas de la distribución. Los activos

que parecen tener un peor ajuste a la distribución normal son el oro, las acciones y las

hipotecas. A diferencia de los bonos de gobiernos, cuasi-gobiernos y los bonos atados a

inflación, la distribución observada de los bonos corporativos tiene un comportamiento

asimétrico en las colas de la distribución. En particular, sólo las pérdidas tienden a ser más

extremas que lo que sugiere una distribución normal.

Gráfico 1: Gráficas de probabilidad de retornos diarios, Enero 1 de 1998 – Diciembre 31 de 2012

* Fuente: Datos obtenidos a través de Bloomberg. Cálculos del autor.

El Gráfico 2, presenta los histogramas de cada uno de los activos, junto al ajuste a

una distribución normal. Se puede observar que la distribución normal no logra capturar las

(16)

Página 16 de 53 bonos corporativos y el oro, la alta asimetría observada de los retornos de estos activos no

logra ser capturada por la distribución normal.

Según el Gráfico 2 los activos que pueden tener un mejor ajuste a una distribución

normal son los bonos de los gobiernos del G7 y los bonos de emisores cuasi-soberanos. Lo

anterior puede explicarse por el hecho que este tipo de bonos son considerados los activos

financieros más seguros que existen y en su mayoría no tienen opcionalidades, como si lo

hacen las hipotecas.

Gráfico 2: Histogramas de retornos diarios, Enero 1 de 1998 – Diciembre 31 de 2012

* Fuente: Datos obtenidos a través de Bloomberg. Cálculos del autor.

Finalmente, para realizar un análisis más detallado del ajuste de los retornos de los

(17)

Jarque-Página 17 de 53

Bera, Kolmogorov-Smirnov y Lilliefors para cada uno de los años en la muestra9. El oro y

las hipotecas son los activos para los cuales es más frecuente rechazar la hipótesis de

normalidad a un nivel de confianza del 5%. Los bonos de emisores soberanos,

cuasi-soberanos y corporativos son mejores candidatos para ser modelados a través de la

distribución normal. Sin embargo, a excepción de la prueba Kolmogorov-Smirnov10,

durante el 2008 para todos los activos se rechaza la hipótesis de normalidad. Lo que sugiere

que en periodos de crisis no debe asumirse la normalidad de los retornos. Por el contrario,

debe emplearse un modelo para representar las distribuciones de los retornos que incorpore

más información sobre la distribución de estos (e.g., asimetría y curtosis) y un esquema de

optimización que logre incorporar esta información adicional.

La siguiente sección presenta los resultados comparativos de las soluciones al

problema de selección estratégica de activos entre el modelo de Markowitz (1952) y el

modelo de media-CVaR. La no-normalidad observada en los retornos de los activos se

incorpora mediante el uso de distribuciones -estables, que son una generalización de la

distribución normal.

Gráfico 3: -valores de pruebas de normalidad por año

9

Al aplicar las pruebas a toda la muestra, siempre se rechaza la hipótesis nula que establece que los retornos siguen una distribución normal.

10 Puesto que los parámetros de la distribución de los retornos de los activos no son conocidos y la función de densidad acumulada debe estimarse para cada conjunto de datos (para cada año), la prueba de Kolmogorov-Smirnov no es precisa (Lilliefors, 1967). En esta situación la prueba de Lilliefors es más confiable. Según esta última prueba en el 2008 se rechaza la hipótesis de normalidad para todos los activos.

0.0 0.2 0.4 0.6 0.8 1.0 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 W0G7 0.0 0.2 0.4 0.6 0.8 1.0 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 W0GI

(18)

Página 18 de 53

* Fuente: Datos obtenidos a través de Bloomberg. Cálculos del autor.

V. Resultados

Para estudiar las diferencias en la SAA al incorporar criterios de no normalidad de

los retornos se propone analizar, durante el periodo entre Enero de 2008 y Diciembre de

2012, los resultados obtenidos al aplicar el modelo de Markowitz (1952) y el modelo de

media-CVaR (donde se usan las distribuciones -estables). Este periodo de tiempo permite

comparar los resultados obtenidos durante diferentes etapas del ciclo económico, porque el

análisis se realiza durante la crisis financiera más reciente y el posterior periodo de débil

0.0 0.2 0.4 0.6 0.8 1.0 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 G0BQ 0.0 0.2 0.4 0.6 0.8 1.0 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 G0BC 0.0 0.2 0.4 0.6 0.8 1.0 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 M0A0 0.0 0.2 0.4 0.6 0.8 1.0 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 STEMWDU 0.0 0.2 0.4 0.6 0.8 1.0 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 STPMWDU 0.0 0.2 0.4 0.6 0.8 1.0 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 GOLD

(19)

Página 19 de 53 recuperación económica global. Sin embargo, es importante aclarar que los resultados

obtenidos no deben generalizarse y son particulares al periodo analizado y al conjunto de

activos empleado.

Para cada fin de mes, desde diciembre de 2007 hasta diciembre de 2012, se actualiza

el conjunto de información del inversionista (i.e., se actualiza las series de retornos diarios

de los activos, dejando fija la fecha inicial fija en enero 1 de 1998) y se lleva a cabo el

proceso de optimización. De esta forma se obtiene para cada mes dos asignaciones

eficientes: una basada en el esquema de media-CVaR y otra construida mediante el

esquema tradicional de Markowitz. Para ambas metodologías, las asignaciones óptimas son

el resultado de minimizar el riesgo dado un retorno esperado11. En el caso del modelo de

media-varianza se minimiza la volatilidad de los retornos de los portafolios, mientras que

en el esquema de media-CVaR se minimiza el valor en riesgo condicional de los

portafolios. Los resultados presentados corresponden a aquellas combinaciones de activos

que generan retornos esperados de 7%, 8% y 9%12. El conjunto inicial de información son

las series de retornos de los activos desde enero de 1998 hasta diciembre de 2007. Usando

las asignaciones óptimas bajo ambos esquemas y los retornos observados de cada uno de

los activos es posible establecer el retorno que se hubiera obtenido en ambos portafolios.

De esta forma se analiza sí el desempeño de un portafolio es mayor cuando se tienen en

cuenta características de no-normalidad en la SAA. Además, en base a las asignaciones

óptimas de cada esquema se puede establecer cuál de éstas tiene un mayor nivel de

diversificación.

Es importante resaltar que para cada mes en el periodo de análisis se debe llevar a

cabo la optimización tanto del esquema de Markowitz como de media-CVaR, lo que

implica que para cada mes se deben realizar dos simulaciones de los retornos de los activos.

11 Por pragmatismo al momento de realizar la comparación de las estrategias de inversión determinadas por las metodologías de media-varianza y media-CVaR, se escogieron arbitrariamente un conjunto de retornos esperados. Sin embargo, es importante aclarar que las preferencias de los inversionistas que motivan el uso de la metodología de media CVaR no son iguales a las preferencias que justifican la metodología de Markowtiz (1952). Esto debe tenerse presente al momento de realizar la comparación entre las estrategias de inversión pues en este trabajo no se incorpora de forma directa las preferencias de los inversionistas.

12

Se realizaron optimizaciones para retornos esperados entre 5% y 10%. Los resultados presentados corresponden a aquellos retornos esperados para los cuales el problema de optimización resultó factible.

(20)

Página 20 de 53 Una de éstas se hace en base a una distribución normal multivariada y otra en base a las

distribuciones -estables (ver Anexo para ejemplos de las simulaciones).

Para realizar la simulación de los retornos, cuando estos están representados por una

distribución normal, el primer paso es estimar el retorno promedio y la matriz de

varianza-covarianza usando el conjunto de información apropiado13. Posteriormente, se realizan

1000 simulaciones de retornos diarios para un horizonte de inversión de 1 año14. A partir de

las simulaciones se obtienen los retornos esperados y la matriz de varianza-covarianza

esperada. Estos dos parámetros son los empleados en el modelo de optimización de

media-varianza.

Puesto que las series usadas para la estimación de los parámetros empleados en la

simulación de los retornos de los activos son al menos de 10 años, se realizó como control

3 ejercicios adicionales donde se emplearon diferentes factores de decaimiento

exponencial15 para estimar la matriz de varianza-covarianza de los retornos. Por tanto, los

resultados de 4 simulaciones fueron usados en el esquema de optimización de

media-varianza (en el caso base no se empleó decaimiento exponencial).

En el caso de la simulación de los retornos en base a la distribución -estable, el

primer paso consiste en ajustar los retornos observados a esta distribución. Para ello, debe

estimarse los cuatro parámetros de la distribución -estable (ver Anexo 1). Esto se realiza

de forma individual para cada uno de los 8 activos16. Usando los cuatro parámetros

estimados para la distribución de cada activo se normalizan los retornos observados

mediante las funciones de densidad acumulada. El resultado es un conjunto de series de

retornos en el espacio [ ]. Con los retornos normalizados se estiman los parámetros

(matriz de correlaciones y grados de libertad) de una copula- , que busca representar las

13 Los retornos y matrices de varianza-covarianza empleados en cada simulación son diarios. El conjunto de información apropiado depende del mes para el cual se resuelva el problema de SAA.

14 El tiempo de ejecución de las simulaciones (para los 60 meses analizados) usando la distribución normal y la distribución -estable es de 2.5 días para 1000 simulaciones. Emplear más simulaciones resulta en un costo computacional muy elevado.

15 Los factores usados son { }. Los factores usados son los más frecuentemente empleados para estimar matrices de varianza-covarianza. Entre menor es el factor de decaimiento exponencial, mayor es la importancia de los datos más recientes y menor es la relevancia de los datos más antiguos.

16 El ejercicio se realiza para las distribuciones univariadas porque la distribución multivariada -estable supone que el índice de estabilidad es igual para todos los activos (Xiong & Idzorek, 2011). Un supuesto que resulta muy fuerte en base a la curtosis estimada para cada uno de los retornos (ver Anexo ).

(21)

Página 21 de 53 dependencias entre los activos. Una vez estimados estos parámetros se realizan 1000

simulaciones de retornos diarios para un horizonte de inversión de 1 año. Los retornos

generados mediante la simulación son transformados del espacio [ ] a su escala original

mediante las funciones inversas de densidad acumulada17 (Bouyé, Durrleman, Nikeghbali,

Riboulet, & Roncalli, 2000). El resultado de las simulaciones es una matriz de 1000 retornos anuales para cada uno de los 8 activos. Esta matriz es empleada en el proceso de

optimización de media-CVaR. El nivel de confianza con el que se estima CVaR es 5%.

Como ejercicio de control para el esquema de optimización de media-CVaR se realizó la

simulación de los retornos (siguiendo el procedimiento descrito anteriormente) sin asumir

una distribución particular para representar las distribuciones univariadas de los retornos.

En el control se usó la distribución histórica de los retornos y no la familia de

distribuciones -estables. De esta forma se puede analizar si los resultados son sensibles

tanto a la metodología de optimización, como a la representación de los retornos.

Tanto en la metodología de varianza, como en la metodología de

media-CVaR se usó un horizonte de inversión de 1 año, al momento de realizar las simulaciones

para obtener el retorno esperado. Este horizonte se escogió pensando en un inversionista de

corto plazo, con una tolerancia y capacidad baja para afrontar riesgos. Por ejemplo,

inversionistas institucionales, como bancos centrales, dada su alta aversión al riesgo tienen

un horizonte de inversión de corto plazo (León & Vela, 2011).

Realizar mensualmente este proceso de optimización de portafolios permite obtener

más observaciones para realizar la comparación entre las estrategias de inversión que

resultan de emplear las dos metodologías de optimización de portafolios analizadas. Sin

embargo, implementar un proceso de rebalanceo mensual puede generar altos costos de

transacción que destruyan el retorno logrado por actualizar el conjunto de información del

inversionista. A pesar de esto, y con el objetivo de hacer más sencillo el proceso de

optimización, este trabajo no tiene en cuenta los costos de transacción al optimizar los

17

Para regresar a la escala original de los retornos se usan los parámetros de las distribuciones -estables previamente estimados.

(22)

Página 22 de 53

portafolios18. Sin embargo, se realiza un ejercicio posterior para estimar el impacto de los

costos de transacción en el retorno de cada uno de los portafolios construidos.

a. Asignaciones óptimas

Diferencias significativas son observadas al contrastar las asignaciones óptimas

obtenidas al incluir la no-normalidad de los retornos en relación al modelo clásico de

Markowitz. En el Anexo 5 se presentan gráficamente las asignaciones óptimas que se

obtuvieron empleando los modelos clásico y de media-CVaR. Ambos modelos sugieren

que para portafolios con retornos anuales esperados de 7%, 8% y 9%, los bonos de

gobiernos del G7 y corporativos no son deseables. En el caso de los bonos de gobierno, este

resultado se debe a que el retorno anual esperado de este activo (en promedio 4.3%) es

menor al de los demás activos empleados y está por fuera del conjunto de retornos

analizados para los portafolios (7%, 8% y 9%). Los bonos corporativos no hacen parte de

los portafolios construidos por la mayor volatilidad de este activo en relación a los otros

bonos que hacen parte del universo analizado y en el caso de la metodología de

media-CVaR por presentar una asimetría negativa mayor que los demás activos.

Por su parte, los bonos de emisores cuasi-soberanos tienen una mayor participación

en un portafolio con un retorno anual esperado del 7% cuando se considera el modelo de

media-CVaR. Sin embargo, esto sólo ocurre cuando se usan las distribuciones -estables

para modelar los retornos. Esto resulta interesante, porque implica que no sólo es necesario

tener en cuenta las colas de las distribuciones mediante el uso de métricas de riesgo como el

CVaR, sino que es importante usar un modelo adecuado para representar la distribución de

los retornos de los activos.

En el Anexo 5, también se puede observar que para portafolios con retornos anuales

esperados de 8 y 9%, el peso asignado a las hipotecas es mayor cuando se usa el modelo de

media-CVaR y distribuciones -estables que cuando se tiene en cuenta el modelo de

media-varianza (con un factor de decaimiento exponencial igual a 1). Para un portafolio

con un retorno anual esperado de 7% el peso asignado a las hipotecas es similar en ambos

modelos, pero con una menor volatilidad a través de tiempo en el caso del modelo de

18

Los costos de transacción no son necesariamente iguales para ambas metodologías. Un proceso de decisión más robusto incluiría los costos de transacción.

(23)

Página 23 de 53

media-CVaR con distribuciones -estables. Por su parte, los bonos atados a inflación

tienden a recibir una mayor ponderación en la medida que se demanda un mayor retorno

esperado del portafolio de inversión, cuando se incorpora la asimetría y curtosis de este

activo en el problema de selección de portafolios.

Por otro lado, los activos que presentan una mayor curtosis, son más volátiles y

presentan distribuciones con asimetría negativa (el oro y acciones de baja capitalización)

obtienen menores participaciones en un modelo de media-CVaR cuando se usan

distribuciones -estables. Esto sugiere que este tipo de distribuciones logran capturar

adecuadamente el comportamiento de estos activos y por ende al centrar la atención en las

colas de las distribuciones, la minimización del valor de pérdida condicional sugiere una

menor participación de estos activos en los portafolios de inversión.

En general, los resultados obtenidos respaldan las siguientes conclusiones: en

primer lugar, al incorporar la no-normalidad de los retornos de los activos, las asignaciones

óptimas obtenidas bajo ambos modelos son significativamente diferentes. Este resultado no

es nuevo en la literatura, pues trabajos como el de Xiong & Idzorek (2011) ya han

estudiado la inclusión de asimetrías y curtosis de retornos en el problema de SAA. En

segundo lugar, se puede afirmar que las distribuciones -estables capturan características

de no-normalidad de retornos y por tanto, su uso en un modelo de media-CVaR conlleva en

que activos más volátiles, con asimetrías más negativas y mayor curtosis tengan una menor

participación en portafolios de inversión.

Por otro lado, los resultados sugieren una tercera conclusión. La gran volatilidad

observada en las asignaciones óptimas, es resultado de los cambios a través del tiempo en

los parámetros estimados y usados en los dos modelos de simulación. Huang, Zhu, Fabozzi,

& Fukushima (2010) señalan que estos cambios en el portafolio óptimo implican la necesidad de estimar con precisión los parámetros empleados en los modelos de

optimización. A pesar de no usar optimización robusta, como sugieren los mencionados

autores, la volatilidad de las asignaciones óptimas es menor cuando se emplea el modelo de

media-CVaR con distribuciones -estables. Por ejemplo, la volatilidad del peso asignado a

bonos atados a inflación para un portafolio con un retorno esperado de 8% cuando se

(24)

Página 24 de 53 del 16.4%. Para el mismo activo, la volatilidad al usar el modelo de media-CVaR con

distribuciones -estables es de 8.9%. Usar factores de decaimiento exponencial menores a

uno y las distribuciones no-paramétricas de los retornos conlleva a cambios más fuertes en

las asignaciones de los activos.

b. Riesgo estimado, retornos realizados y diversificación de los portafolios

Las gráficas del Anexo 6 muestran la desviación estándar y el CVaR estimados para

los portafolios de inversión a través del tiempo. De acuerdo con los resultados observados,

emplear un modelo de optimización de media-CVaR con distribuciones -estables lleva a

la construcción de portafolios de inversión que presentan menores volatilidades estimadas

de sus retornos y a una menor probabilidad de grandes pérdidas.

A diferencia del modelo clásico de Markowitz, el esquema de optimización de

media-CVaR no presenta incrementos sustanciales en el riesgo estimado de los portafolios

durante la reciente crisis financiera. Esto parece indicar que la inclusión de características

de no-normalidad de los retornos permite cubrir un portafolio ante el riesgo de sufrir

pérdidas extremas.

La alta volatilidad estimada para los portafolios construidos con la metodología de

Markowitz es el resultado de asignar una mayor participación a activos de mayor curtosis y

desviación estándar, como el oro y las acciones de baja capitalización. Al no tener en

cuenta más momentos de la distribución de los retornos, los inversionistas construyen

portafolios con una menor diversificación y por tanto terminan con inversiones

sub-óptimas.

Para analizar el nivel de diversificación de los portafolios construidos bajo ambas

metodologías se calcula este nivel de la siguiente forma (Zhu, 2010):

[ ]

Donde representa la asignación óptima al activo . Entre menor sea el nivel de

diversificación, más cercano va a ser a cero. Por el contrario, un cercano a uno indica

(25)

Página 25 de 53 La siguiente gráfica presenta el nivel de diversificación obtenido para cada uno de

los portafolios. Como se pude observar en ésta, los portafolios construidos mediante el

esquema de optimización de media-CVaR con distribuciones -estables tienden a presentar

un mayor nivel de diversificación. Para el periodo analizado el nivel de diversificación

promedio obtenido según esta metodología es del 61.1%, mientras que los portafolio

construidos con el esquema de Markowitz (factor de decaimiento exponencial igual a 1)

tienen en promedio un nivel de diversificación del 53.7%. Además, el hecho que las

asignaciones óptimas de la metodología de optimización media-CVaR con distribuciones

-estables sean más estables, también implica que el nivel de diversificación obtenido sea

menos volátil. Por tanto, los portafolios obtenidos mediante esta metodología logran un

mismo retorno anual esperado pero con menor riesgo y mayor diversificación. Una

estrategia miope, en la cual el peso de cada activo es igual, tendría una diversificación del

87.5% durante todo el periodo como se observa en la gráfica.

Gráfico 4: Nivel de diversificación de portafolios

* Fuente: Cálculos del autor.

** El nivel de diversificación calculado corresponde al de los portafolios con un retorno esperado de 8%.

Para analizar los retornos realizados de los portafolios de inversión, se usan los

(26)

Página 26 de 53 analizado corresponde a aquel logrado fuera de muestra. Es decir, para cada mes los

retornos mensuales observados de los activos son multiplicados por las asignaciones

óptimas estimadas a comienzo de cada mes para obtener el retorno mensual realizado de los

portafolios.

La siguiente gráfica muestra los retornos acumulados de los portafolios durante el

periodo de análisis. Además, se incluye en la comparación un portafolio construido

mediante una estrategia miope, donde los pesos de todos los activos son iguales. Se puede

observar que durante la crisis financiera del 2008, el portafolio obtenido mediante la

metodología de media-CVaR con distribuciones -estables logra proteger al inversionista

de una pérdida sustancial y obtener un retorno mayor que el que se hubiera obtenido con un

portafolio construido con el modelo de Markowitz. Además, estos resultados sugieren que

para reducir la probabilidad de afrontar pérdidas extremas en un portafolio no sólo el

empleo de diferentes metodologías, como el esquema de media-CVaR, es suficiente. Debe

realizarse una adecuada modelación de los retornos como se observa en los resultados

obtenidos al usar las distribuciones históricas dentro del esquema de media-CVaR.

Gráfico 5: Retornos mensuales acumulados

(27)

Página 27 de 53

b) Portafolios con retorno esperado de 8%

c) Portafolios con retorno esperado de 9%

* Fuente: Cálculos del autor.

De las anteriores gráficas también se observa que el portafolio de media-CVaR con

distribuciones -estables otorga una mayor protección contra pérdidas extremas que un

(28)

Página 28 de 53 sin un objetivo claro no necesariamente reduce la probabilidad de afrontar pérdidas

sustanciales en un portafolio. En este sentido, un portafolio construido con el objetivo de

minimizar el CVaR, donde los retornos están caracterizados mediante distribuciones

-estables, permite obtener portafolios con una mayor protección a escenarios adversos. Esto

resulta valioso en la medida que recuperar en un portafolio de inversión las pérdidas

extremas que puedan afrontarse es una tarea difícil de realizar.

Para analizar si hay diferencias estadísticas entre los portafolios en cuanto a los

retornos mensuales realizados se realizaron pruebas de diferencias de medias. Para esto se

tuvo en cuenta si la varianza de los retornos es similar entre los portafolios.

Cuadro 2: Prueba para igualdad de varianzas de dos muestras

Retorno Metodología

Markowitz (λ=1)

Markowitz (λ=0.99)

Markowitz (λ=0.97)

Markowitz (λ=0.94)

M-CVaR (α-estables)

M-CVaR (kernel)

7%

Markowitz 0.869 (λ=0.99) [0.296]

Markowitz 0.869 1.000 (λ=0.97) [0.295] [0.499]

Markowitz 0.850 0.978 0.978 (λ=0.94) [0.267] [0.466] [0.466]

M-CVaR 2.628 3.024 3.024 3.092

(α-estables) [0.000]*** [0.000]*** [0.000]*** [0.000]***

M-CVaR 0.912 1.050 1.050 1.073 0.347

(kernel) [0.362] [0.426] [0.426] [0.393] [0.000]***

Estrategia 0.835 0.961 0.961 0.983 0.318 0.915

Miope [0.245] [0.439] [0.439] [0.473] [0.000]*** [0.368]

8%

Markowitz 0.839

(λ=0.99) [0.251]

Markowitz 0.819 0.976

(λ=0.97) [0.223] [0.464]

Markowitz 0.812 0.968 0.991

(λ=0.94) [0.213] [0.450] [0.486]

M-CVaR 3.185 3.796 3.887 3.923

(α-estables) [0.000]*** [0.000]*** [0.000]*** [0.000]***

M-CVaR 0.888 1.059 1.084 1.094 0.279

(kernel) [0.325] [0.414] [0.378] [0.365] [0.000]***

Estrategia 1.879 2.239 2.294 2.315 0.590 2.115

Miope [0.008]*** [0.001]*** [0.001]*** [0.001]*** [0.022]** [0.002]***

9%

Markowitz 0.877

(λ=0.99) [0.307]

Markowitz 0.902 1.029

(λ=0.97) [0.346] [0.457]

Markowitz 0.896 1.022 0.994

(λ=0.94) [0.338] [0.466] [0.491]

M-CVaR 3.629 4.139 4.023 4.048

(α-estables) [0.000]*** [0.000]*** [0.000]*** [0.000]***

M-CVaR 0.958 1.092 1.062 1.068 0.264

(kernel) [0.434] [0.368] [0.409] [0.400] [0.000]***

Estrategia 3.558 4.059 3.945 3.968 0.981 3.716

Miope [0.000]*** [0.000]*** [0.000]*** [0.000]*** [0.470] [0.000]*** ∆

(***) Significativo a un nivel de confianza del 1%, (**) Significativo con un nivel de confianza del 5%.

(29)

Página 29 de 53 Los resultados del Cuadro 2 permiten concluir que la varianza de los retornos

realizados del modelo de media-CVaR con distribuciones -estables es diferente a la

varianza de los demás portafolios construidos. De hecho, la varianza de la metodología

analizada no sólo es diferente sino que es estadísticamente menor con un nivel de confianza

del 99%. Por tanto, estos resultados confirman estadísticamente que los portafolios

construidos minimizando el CVaR y empleando distribuciones -estables son menos

volátiles que los portafolios que emplean otras caracterizaciones de los retornos de los

activos y/o otros esquemas de optimización.

Cuadro 3: Prueba para diferencia de medias de dos muestras1, 2

Retorno Metodología

Markowitz (λ=1)

Markowitz (λ=0.99)

Markowitz (λ=0.97)

Markowitz (λ=0.94)

M-CVaR (α-estables)

M-CVaR (kernel)

7%

Markowitz 0.143

(λ=0.99) [0.886]

Markowitz 0.299 0.151

(λ=0.97) [0.765] [0.881]

Markowitz 0.312 0.164 0.014

(λ=0.94) [0.756] [0.870] [0.989]

M-CVaR -0.057 -0.224 -0.409 -0.423

(α-estables) [0.955] [0.823] [0.684] [0.674]

M-CVaR -0.253 -0.384 -0.537 -0.548 -0.246

(kernel) [0.801] [0.702] [0.593] [0.585] [0.806] Estrategia -0.096 -0.231 -0.379 -0.392 -0.061 0.147 Miope [0.923] [0.818] [0.705] [0.696] [0.952] [0.884]

8%

Markowitz 0.102

(λ=0.99) [0.919]

Markowitz 0.202 0.096

(λ=0.97) [0.840] [0.923]

Markowitz 0.280 0.172 0.075

(λ=0.94) [0.780] [0.864] [0.940]

M-CVaR 0.249 0.110 -0.012 -0.107

(α-estables) [0.804] [0.913] [0.990] [0.915]

M-CVaR -0.358 -0.442 -0.537 -0.613 -0.673

(kernel) [0.721] [0.659] [0.592] [0.541] [0.503] Estrategia 0.213 0.086 -0.028 -0.116 -0.023 0.611 Miope [0.832] [0.932] [0.978] [0.907] [0.981] [0.543]

9%

Markowitz 0.180

(λ=0.99) [0.857]

Markowitz 0.238 0.055

(λ=0.97) [0.812] [0.956]

Markowitz 0.254 0.070 0.016

(λ=0.94) [0.800] [0.944] [0.987]

M-CVaR 0.230 -0.003 -0.073 -0.092

(α-estables) [0.818] [0.998] [0.942] [0.927]

M-CVaR -0.291 -0.460 -0.519 -0.534 -0.279

(kernel) [0.772] [0.647] [0.605] [0.594] [0.558] Estrategia 0.374 0.133 0.065 0.045 0.218 0.728 Miope [0.709] [0.894] [0.948] [0.964] [0.827] [0.468] 1. Las diferencias en los retornos medios se probaron mediante pruebas estadísticas t de dos colas.

2. Para cada prueba t se tuvo en cuenta los resultados de las pruebas de igualdad de varianzas. * Fuente: Cálculos del autor. En corchetes los p-valores de las pruebas.

(30)

Página 30 de 53

El Cuadro 3 presenta las pruebas de la diferencia de los retornos promedios

realizados en cada uno de los portafolios. En ningún caso se logra rechazar la hipótesis nula

que los retornos realizados son iguales. Por tanto, no hay evidencia estadística que sustente

un mejor desempeño, en términos de retorno, del portafolio obtenido al emplear la

metodología de media-CVaR con distribuciones -estables. Sin embargo, desde un punto

de vista económico, se puede concluir que este esquema de optimización y el uso de las

distribuciones -estables si resulta beneficioso porque logrando retornos similares, la

probabilidad de observar pérdidas grandes en un portafolio construido mediante esta

metodología es menor.

c. Costos de rebalanceo

Para analizar el impacto del rebalanceo mensual sobre los retornos brutos, se

aproximaron los costos de rebalanceo mediante el “bid-ask spread” promedio de cada uno

de los índices empleados. Sin embargo, por la disponibilidad de datos, los costos de

rebalanceo se asumen constantes. Esto supuesto puede resultar fuerte puesto que en etapas

de crisis, la liquidez de los mercados es menor y los costos de transacción aumentan

significativamente. El siguiente cuadro presenta los costos de transacción de cada uno de

los activos empleados para estimar el costo de rebalanceo de los portafolios. Los activos

con menores costos son las hipotecas y los bonos de gobierno, mientras que los activos con

mayores costos de transacción son los bonos corporativos y las acciones de baja

capitalización.

Cuadro 4: Costos de rebalanceo por activo

Código Activo Costo

W0G7 Gobiernos Global 0.040%

W0GI Gobiernos Global TIPS 0.160%

G0BQ Cuasi-Gobiernos Global 0.460%

G0BC Corporativos Global 0.850%

M0A0 Hipotecas 0.035%

STEMWDU Baja Capitalización Global 0.660%

STPMWDU Alta Capitalización Global 0.300%

GOLD Oro 0.100%

* El costo de rebalanceo se calculó como (Ask - Bid) / Bid. * Fuente: datos de Bloomberg. Cálculos del autor.

Como se puede observar en el siguiente cuadro, los menores costos de rebalanceo se

presentan en la estrategia miope, puesto que en ésta sólo es necesario ajustar los pesos del

Referencias

Documento similar

En la base de datos de seguridad combinados de IMFINZI en monoterapia, se produjo insuficiencia suprarrenal inmunomediada en 14 (0,5%) pacientes, incluido Grado 3 en 3

Abstract: This paper reviews the dialogue and controversies between the paratexts of a corpus of collections of short novels –and romances– publi- shed from 1624 to 1637:

En junio de 1980, el Departamento de Literatura Española de la Universi- dad de Sevilla, tras consultar con diversos estudiosos del poeta, decidió propo- ner al Claustro de la

[r]

SVP, EXECUTIVE CREATIVE DIRECTOR JACK MORTON

Social Media, Email Marketing, Workflows, Smart CTA’s, Video Marketing. Blog, Social Media, SEO, SEM, Mobile Marketing,

Habiendo organizado un movimiento revolucionario en Valencia a principios de 1929 y persistido en las reuniones conspirativo-constitucionalistas desde entonces —cierto que a aquellas

diabetes, chronic respiratory disease and cancer) targeted in the Global Action Plan on NCDs as well as other noncommunicable conditions of particular concern in the European