PDF superior PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2000

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2000

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2000

(RESUELTOS) por Antonio Menguiano. MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos Conteste de manera clara y razonada dos de las cuatro opciones propuestas. Cada cues- tión [r]

11 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

La función f(x) es continua y derivable en su dominio, que es R, por lo cual le es aplicable el teorema de Bolzano a cualquier intervalo real que se considere. Los máximos y mínimos re[r]

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

En ningún caso la ecuación tendrá dos raíces reales en el intervalo [0, 1], c.q.d.. Gráficamente también se puede demostrar la cuestión pedida.. 2º) Encontrar el valor máximo que p[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Criterios generales de evaluación de la prueba: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

9 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Una matriz es inversible cuando su determinante es distinto de cero.. b ) Dado el valor de k obtenido en el apartado anterior, estudie los intervalos de creci- miento y decrecimiento de [r]

10 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Para que una función tenga un punto de inflexión es necesario que se anule la se- gunda derivada en ese punto; esta condición, que es necesaria, no es suficiente: es nece- sario que no s[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2012 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2012 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Oblicuas: Para que una función racional tenga asíntotas oblicuas es necesario que el grado del numerador sea una unidad mayor que el grado del denominador; como [r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Como puede observarse, la función f(x) cumple las condiciones del teorema, ex- cepto la de ser continua, y en este caso no existe ningún valor del intervalo [ ] a, b para el cual se a[r]

11 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos Contesta de manera clara y razonada una de las dos opciones propuestas. Cada cuestión se puntúa sobre 10 puntos. La calificac[r]

15 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Vamos a estudiar la posición relativa mediante vectores. Para que las rectas sean paralelas o coincidentes los vectores directores tienen que ser linealmente independientes; en caso con[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Como quiera que resulta un sistema de dos ecuaciones con cuatro incógnitas es compatible indeterminado, por lo tanto tiene infinitas soluciones.. Existen infinitas matrices [r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorará la corrección y la claridad en el lenguaje (matemático o no matemático) em- pleado por el alumno. Penalizan los errores de cálculo. Los errores graves, y especial- mente, aqu[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2009 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2009 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorará la corrección y la claridad en el lenguaje (matemático o no matemático) uti- lizado por el alumno. Penalizan los errores de cálculo. Los errores graves, y especial[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Un vector w , perpendicular común a las dos rectas, es el producto vectorial de los vectores directores de las rectas:.. c ) Determinar los extremos relativos. d ) Hacer un [r]

15 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorarán la corrección y la claridad en el lenguaje (matemático y no matemático) empleado por el alumno. Se valorarán negativamente los errores de cálculo.. b ) Resuélvalo en el ca[r]

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Las asíntotas pueden ser horizontales, verticales y oblicuas.. Para que existe un punto de inflexión para x = 0 es necesario que no se anule la tercera derivada para este valor. Para d[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

(Para que una función racional tenga asíntotas oblicuas es necesario que el grado del numerador sea una unidad mayor que el grado del denominador).. Se pide: a ) Hallar la ecuación gen[r]

10 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorarán positivamente la corrección y la claridad en el lenguaje (matemático y no ma- temático) empleado por el alumno. Se valorarán negativamente los errores de cálculo. Todos lo[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Un extremo relativo (máximo o mínimo) existe en un punto x = a cuando separa un tramo de curva creciente de otro decreciente o viceversa; para ello se toma un núme- ro h suficientemente pequeño y se comprueba que f’(a + h) y f’(a - h) tienen signos dis- tintos, todo lo cual indica que a un lado de a la curva es creciente y al otro decreciente (o viceversa) ; por el contrario, si f’(a + h) y f’(a - h) tienen el mismo signo, la curva es monótona creciente o monótona decreciente en un entorno de a y prueba la no existen- cia de extremos relativos.

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Con objeto de facilitar la representación gráfica de la función vamos a determinar su punto máximo que, según el apartado a ) se produce para x = -1, ya que la función es continua y pa[r]

14 Lee mas

Show all 10000 documents...

Related subjects